

Studie zur Konstruktion der Domkuppel in Florenz

Klaus Stephan

Isabelle Ebering Herausgeberin

Vorwort		
Einleitung		5
Kapitel 1	Baubeschreibung Überblick über Baubeschlüsse und Bauausführung, S. 6	6-18
	Konstruktionsprinzip, S. 13-14 Sporn und Plattform, S. 14-18	
Kapitel 2	Maßbestimmung nach Brunnelleschi Ufermodell, S. 19-22 Entstehungsphasen der Scheitelhöhe, S. 23-24 Gualandrino con tre corde, S. 25-27	19-27
Kapitel 3	Bauausführung Mauerungstechniken, S. 28-37	28-37
Kapitel 4	Aufmaße und Berechnungen Fotogrammetrisches Aufmaß, S. 38-41 Diagonalbögen, S. 42-55	38-55
Kapitel 5	Faktor F	56-59
Anhang	Statik	60-62
Literaturverz	eichnis	63
Abbildungsv	verzeichnis	64

Seite

Verfasser Klaus Stephan † August 2005

Herausgeberin / Texte Isabelle Ebering 2005

Abbildungen Klaus Stephan / Isabelle Ebering Stefano Buonsignori 1584 Salvatore Di Pasquale 1980 Piero Sanpaolesi 1941 Ferri, Fondelli 1971 Silvia Bricoli Bati 1983

Fotographien	
Foto Deckblatt:	Hanna Lange 1987
Foto 1 (Kap. 1 S. 14):	Klaus Stephan 1987
Foto 2 (Kap. 1 S. 14):	Internet 2005 Bearbeitung Hrsg.
Foto 3 (Kap. 1 S. 15):	Krämer 2001, S. 13
Foto 4 (Kap. 1 S. 15):	Klaus Stephan 1987
Foto 5 (Kap. 1 S. 18):	Klaus Stephan 1987
Foto 6 (Kap. 1 S. 18):	Fanelli 2004, S. 161
Foto 7 (Kap. 1 S. 18):	Fanelli 2004, S. 159
Foto 8 (Kap. 3 S. 31):	Fanelli 2004, S. 190/1.5.5

"Diese Studie befasst sich mit der möglichst genauen und zusammenhängenden Darstellung der Maße und Formen der Kuppel sowie mit den Besonderheiten."

"Da ich wegen meines hohen Alters nicht sicher sein kann, dass die geplante vollständige, auch für Laien verständliche Studie zu obigem Thema noch vollendet werden wird, soll nachfolgender Kurztext diejenigen Herleitungen liefern, ohne die die fertigen Zeichnungen und Tabellen nur mühevoll verständlich wären."

September 2001, Klaus Stephan

Vorwort

Dipl.- Ing. Klaus Stephan, Oberbaurat a. D., 1910 geboren in Berlin, starb im August 2005, bevor er den oben genannten Kurztext verfassen konnte.

Im Januar 2001 begann ich, Dipl. Ing. Hochbau Isabelle Ebering, auf Grund der zunehmenden Erblindung Klaus Stephans, unter seiner Anleitung die Überarbeitung und Vervollständigung der von ihm zur Veröffentlichung vorgesehenen Blätter (Zeichnungen).

Aus Hochschätzung der wissenschaftlichen Erkenntnisse Klaus Stephans sehe ich mich nach seinem Tod veranlasst, seinem Wunsch zu entsprechen und die Studie in seinem Sinne zu veröffentlichen.

Durch die enge Zusammenarbeit mit Klaus Stephan, durch seine Aufzeichnungen, mein fachliches Verständnis und umfassende Nachforschungen in der von Klaus Stephan zitierten Literatur ist es mir möglich, die Auswahl der Blätter und die damit verbundene Thematik im Zusammenhang zu kommentieren.

1986 angeregt durch das Lesen des Buches von Eugenio Battisti über das Werk Brunelleschis begann Klaus Stephan 1987 seine Studien über die Konstruktion der Domkuppel. Ausschlaggebend für die Nachforschungen war die These Battistis, dass die Wölbung der Kappen einer polyzentrischen Kurve entspricht, die sich durch proportionale Versetzung des Mittelpunktes ergeben hat (vgl. BATTISTI 1981, S. 366).

Klaus Stephan, der als Architekt und Baurat über ein ausgeprägtes räumliches Vorstellungsvermögen verfügte und sich darüber hinaus für die Mathematik begeisterte, erschien diese Vermutung Battistis unwahrscheinlich, und er sah sich herausgefordert, eigene Nachforschungen und Berechnungen aufzustellen, die seinem Verständnis über die Kuppelkonstruktion mathematisch entsprachen. Durch die Ergebnisse der fotogrammetrischen Vermessung von Ferri, Fondelli et all (1971) hatte Klaus Stephan die Möglichkeit, seine Thesen mathematisch nachzuvollziehen.

Dieser Ausarbeitung sowie der Ergründung der architektonischen Leistung Brunelleschis verschrieb sich Klaus Stephan in einzigartiger Weise, bis er im Sommer 2003 aus gesundheitlichen Gründen nicht mehr in der Lage war, sein persönliches Ziel zu verfolgen, seine Studien zu veröffentlichen.

Die Studien Klaus Stephans waren geprägt von absoluter Genauigkeit und steter Bereitschaft, alle aufkommenden Fragen wissenschaftlich nachvollziehbar zu beantworten. Zwei Forschungsreisen führten ihn somit nach Florenz. Große Unterstützung fand er dort der Dombauhütte und dem Kunsthistorischen Institut.

Es entstand in der Zeit der wissenschaftlichen Arbeit eine umfangreiche Blattsammlung von weit über 900 Blättern, die mit der Blattzahl 700 beginnen. Die Bezifferung der in der Studie befindlichen Abbildungen ist auf die Nummerierung der Blätter zurückzuführen und von Klaus Stephan hinsichtlich der Nachvollziehbarkeit ausdrücklich erwünscht.

Als Mitarbeiter für die Computer gestützten Berechnungen waren Klaus Meerwinck und Jürgen Engels für Klaus Stephan tätig.

In dieser Arbeit werden aus der Fülle des Gesamtmaterials die Kernaussagen herausgearbeitet, die für das Verständnis der von Klaus Stephan aufgestellten Thesen notwendig sind.

Einleitung

Die Kuppel des Domes Santa Maria del Fiore in Florenz fasziniert bis heute die Fachwelt ebenso wie Laien, die täglich im Inneren der Kuppel zur Laterne emporsteigen und erweckt in allen Interessierten die Frage, wie es Brunelleschi möglich war, diese Meisterleistung in seiner Zeit zu verwirklichen: Ohne tragendes Gerüst wurde die Kuppel mit den immensen Ausmaßen unter seiner Leitung erbaut.

Zahlreich und vielfältig ist die Literatur, die hinsichtlich der Erforschung der vielen offenen Fragen veröffentlicht wurde. Bis in die heutige Zeit beschäftigen sich Wissenschaftler mit den Erkenntnissen der letzten Jahrhunderte, und immer wieder werden neue Ansätze gefunden, die versuchen, Brunelleschis Genialität nachzuvollziehen.

Neben einer einleitenden Baubeschreibung hinsichtlich Form und Konstruktion zeigt diese Studie mathematische Ansätze, mit denen sich das Vorgehen Brunelleschis nachträglich erklären ließe.

Mit Abbildungen veranschaulicht wird die Maßfindung zur Errichtung der Kuppel ebenso wie die Mauerungstechnik seiner Zeit.

Basierend auf dem fotogrammetrischen Aufmaß aus dem Jahre 1971 stellt der inhaltliche Hauptteil dieser Studie die mathematischen Ansätze dar, mit denen belegt werden kann, wie der Krümmungsverlauf der Kuppel erzeugt worden sein könnte.

Die bis heute offenen Fragen hinsichtlich der Bauausführung werden hier mathematisch betrachtet, und somit werden Antworten aufgezeigt, die wenig Interpretationsspielraum zulassen.

Die Nachvollziehbarkeit der Ansätze erhebt den Anspruch, auch für interessierte Laien verständlich zu sein, und ihnen wie auch Wissenschaftlern Einblicke in die Konstruktion der Kuppel von Santa Maria del Fiore zu geben. Überblick über Baubeschlüsse und Bauausführung

Der Bau des Doms zu Florenz, Santa Maria del Fiore, wurde 1296 von Arnolfo di Cambio auf den Überresten der alten Basilica di Santa Reparata begonnen (vgl. FANELLI 2004, S.9).

61 Jahre später, am 18.06.1357 fiel die Entscheidung, den Bau der Kirche mit einer Kuppel über der Vierung abzuschließen (vgl. BATTISTI 1979, S. 362).

In dem Baubeschluss der acht Meister von 1367, auf den alle Ausführenden eingeschworen wurden, sind die Gewölbedicken zahlenmäßig in "bracia" / Ellen (1 br = 0,5836 m) festgelegt, und zwar von unten nach oben pyramidal (gleichmäßig) sich verjüngend.

Die Messrichtung muss, wie bei jedem Gewölbe, in Richtung der Lagefugen geplant gewesen sein.

Des Weiteren wurde festgelegt, dass die Kuppel 72 Ellen (41,976 m) breit sein sollte und das Gewölbe von der Erde an eine Höhe von 144 Ellen (83,952 m) erreichen sollte (vgl. BATTISTI 1979, S. 114).

Ab 1410 entstand der Bau des achteckigen Kuppeltambours, auf dem die Kuppel ruht.

1418 wurde ein Ideenwettbewerb für die Kuppel und ihre Wölbung sowie für die Gerüste und die Lastenaufzüge ausgeschrieben (vgl. BATTISTI 1979, S. 362).

Diesen gewann 1420 der Sculptor und Architekt Filippo Brunelleschi, Experte in den Richtlinien der Perspektive und Mathematik sowie ein wirklicher Enthusiast für die Aufbautechniken.

Im April 1420 erstellte das Dombauamt ein offizielles Programm für die Bauarbeiten und ernannte Brunelleschi, Lorenzo Ghiberti und Battista d'Antonio zu Bauleitern der Kuppel.

Im August desselben Jahres begannen die Maurerarbeiten der Kuppel.

Im März 1422 gab es eine Änderung bezüglich des Bauprogramms von 1420. Um das Gewicht zu reduzieren, sollte bereits in Höhe von 12 Ellen (7,00 m) ein Materialwechsel von Naturstein zu Ziegelstein erfolgen. Das Maß der Mittelrippe am Fuß wurde von 4 Ellen auf 3 Ellen herabgesetzt (vgl. BATTISTI 1979, S. 363).

Einen Zusatz zum Baubeschluss von 1420 gab es im Januar 1426.

1432 fertigten Brunelleschi und Battista d'Antonio einen Entwurf mit Modell für den Scheitel des Kuppelgewölbes an, der die Laterne aufnehmen sollte.

Für die Laterne wurde Ende 1436 das Modell Brunelleschis gewählt. 1438 fiel der Entschluss, Halbsäulen statt Pilaster neben den Nischen der Exedren aufzustellen.

1443 wurde Brunelleschi zum Bauleiter der Laterne ernannt.

Filippo Brunelleschi starb am 15.04.1446, bevor die Kuppel durch die Laterne vollendet wurde. Seine Beisetzung erfolgte zunächst in der Grabnische von Giottos Campanile, bevor 1447 der Entschluss gefasst wurde, seinen Leichnam im Boden des Doms beizusetzen.

Nach seinem Tode gab es drei verschiedene Bauleiter, bevor die Arbeiten an der Laterne am 19.01.1468 abgeschlossen wurden.

Alle chronologischen Daten stammen aus den biographischen Anmerkungen bei BATTISTI (vgl. 1979, S. 330, 331, 335-339).

Form und Maße

Bei der Kuppel des Doms Santa Maria del Fiore handelt es sich um eine so genannte Klosterkuppel (Abb. 1). Diese Bezeichnung gilt für die entsprechende Überwölbung eines achteckigen Grundrisses mit Wangen / Kappen.

Die Planung von 1367 forderte zunächst die Einhaltung der Breite von umgerechnet 41,97 m im Querschnitt und der Höhe von 83,95 m sowie der zahlenmäßig festgelegten Gewölbedicken.

Dieser Beschluss wurde 1420 und 1426 um nachfolgende Festlegungen ergänzt:

Der Baubeschluss von 1420 (vgl. BATTISTI 1979, S. 363) enthielt folgende Festlegungen

-	die Innenseite soll in den Ecken nach dem Mo Dicke der Innenschale am Fuß: Dicke der Innenschale beim Auge:	aß Quinto Acuto gewölbt sein 3 ¾ Ellen = 2,19 m 2 ½ Ellen = 1,46 m				
-	die Außenschale dient dem Schutz vor Feuch Dicke der Außenschale am Fuß: Dicke der Innenschale beim Auge:	tigkeit 1 ¼ Ellen = 0,73 m 2/3 Ellen = 0,39 m				
-	der Zwischenraum mit Treppe soll Kontrollen e Zwischenraum am Fuße: Zwischenraum am Auge:	ermöglichen 2 Ellen = 1,17 m 2 1/3 Ellen = 1,36 m				
-	es soll 24 Rippen (8 Eckrippen, 16 Mittelrippen Eckrippen am Fuß: Mittelrippen am Fuß:) geben, die sich proportional verjüngen 7 Ellen = 4,08 m 4 Ellen = 2,33 m (später 3 Ellen = 1,75 m)				
-	die 24 Rippen sind eingefasst mit 6 Kreisen und guten Klammern aus Eisen	von starken (Natur-) Steinen und langen				
-	über den Steinen sind Ketten aus Eisen … (Ring der erste Steinkreis in der Höhe von 5 ¼ Ellen Steine … erste und zweite Steinkreishöhe: dritte und vierte Steinkreishöhe: fünfte & sechste Steinkreishöhe:	ganker), = 3,06 m ist unten verstärkt durch (Natur-) 2 Ellen = 1,17 m 1 1/3 Ellen = 0,78 m 1 Elle = 0,58 m				
-	in der Höhe von je 12 Ellen = 7,00 m soll es zw Verbindungen aus Eichenholz mit einer darü Gewölbe innen umgeben	<i>v</i> ischen der einen und der anderen Rippe ber liegenden Eisenkette geben, die das				
-	die Rippen sind aus Naturstein und festem Ste	ein				
-	die Innenschale soll bis zur Höhe von 24 Ellen (14 m) ebenfalls aus festem Stein ge- mauert werden, danach wird mit Ziegeln oder Tuffstein (leichteres Material) weiter gemauert					
-	in einer Höhe von 2 Ellen (1,17 m) soll es ein Augen, als Tribüne zur "Anmut" geben	"Hängegesims", einen Gang über den 8				
-	eine Marmorrinne mit einer Breite von 1/3 Elle	n (0,20 m) dient der Entwässerung				
-	die Außenrippen sollen 1 Elle (0,58 m) hoch ur	nd 2 Ellen (1,17 m) breit sein				
-	bis zu einer Höhe von 30 Ellen (17,50 m) soll gemauert werden, über das Vorgehen ab 30	ohne Schalung, aber mit Arbeitsbühnen Ellen wird später entschieden				

Die überragende Leistung Filippo Brunelleschis bestand in der Umsetzung der planerischen Vorgaben vermittels der Idee, die Kuppel ohne tragende Rüstung, sondern selbst tragend zu errichten. Die Realisierung gelang durch den grundlegenden Gedanken, das zweischalige Gewölbe umlaufend hochzuziehen und die Mittelrippen als senkrechte Verbindungselemente zu nutzen.

Des Weiteren gelten die Mauerung im Fischgrätenverband, worauf im Kapitel 3 eingegangen wird, sowie die konsequente Einhaltung des Quinto-Acuto-Maßes als elementare Bestandteile dieser herausragenden Leistung.

Ufermodell

Zunächst galt es, die horizontalen Abmessungen des gesamten Kuppelgrundrisses an seiner Basis festzulegen. Diese Maßbestimmung vor Baubeginn erfolgte laut Giovanni Battista Gelli (1498-1563), so Stephan mittels eines Planes im Maßstab 1:1, den Brunelleschi am Ufer des Arno-Strandes anfertigte.

Diesbezüglich verfasste Stephan folgenden Text:

"In der Bauzeit der Kuppel gab es einen großen freien Platz vor dem damaligen Stadttor San Lorenzo. Dieses Tor lag nicht direkt bei der Kirche San Lorenzo, sondern etwas nördlicher, im Zuge der Via Oriolo und ihrer Verlängerung, die schnurgerade vom Dom zu diesem Stadttor führte. Zu sehen ist dieses Gelände noch in dem Stadtplan des Stefano Buonsignori von 1584, Blatt [...], dessen Original im Städt. Museum ("Firenze come era'), Via Oriolo, ausgestellt ist. Man sieht in der Zeichnung dort noch Holzbalken liegen, dicht am Arnus Ufer.

Laut Gelly, ..., 15(50), ließ Brunnelleschi im eingeebneten Strandsand des Arno vor dem damaligen Stadttor San Lorenzo¹⁾ den Basis-Grundriss der Kuppel abstecken; , ... und er markierte in der Mitte einen Punkt.' Mehr erfahren wir nicht, wegen einer Schriftlücke im Original. Was bedeutet also das Markieren eines Punktes in der Mitte? Für ein <u>regelmä-Biges</u> Achteck hätte man den Mittelpunkt viel einfacher und genauer auf rechnerischem Wege finden können. Aber auch die vorhandenen Schiefheiten des Basis-Achtecks können nicht Anlaß für ein so aufwendiges Messverfahren gewesen sein: moderne Aufmaße zeigen, daß selbst hierbei die 4 Diagonalen sich rein zufällig fast in einem Punkt treffen.²⁾ Die durchschnittliche Abweichung vom statistischen Zentrum beträgt 3 cm, die Breite eines Strickes! Und das bei 45 m Länge. Da war also kein Anlaß zu besonderer Festlegung, wo denn nun der Mittelpunkt anzunehmen sei.

Die Sandfläche am Arnus-Ufer, auf der die Maß-Ermittlungen erfolgen sollten, wurde zwar, - wie ausdrücklich erwähnt - eingeebnet; aber die Kuppelbasis war keine einwandfreie horizontale Ebene ³).

Sie ,hängt' vielmehr (nicht ganz einheitlich) von NW nach SO um etwa 13 cm, vgl. Abb. 12. Das entspricht einer Abwärts-Neigung von etwa ...°.

Nehmen wir nun an, daß Brunelleschi es erreichen wollte, das Zentrum der Laternenöffnung exakt senkrecht über dem Zentrum der Basis anzuordnen, dann mußte die Kuppelachse, die diese beiden Punkte verbindet, um möglichst den gleichen Winkelbetrag von der Senkrechten abweichen. Und – welche Überraschung! – eine solche Abweichung gibt es tatsächlich! Sie beträgt zwar rd 18 cm statt der rechnerisch zu erwartenden rd 9 cm; aber wer wollte hier Zentimetergenauigkeit erwarten?"

2) mittlere Abweichung: nur 3 cm

Für die Beantwortung der Frage nach dem "Markieren eines Punktes in der Mitte" zog Stephan zwei Möglichkeiten in Betracht.

Zum einen besteht nach Stephan die Möglichkeit, dass es sich, wie in seinem Text beschrieben, um den Schnittpunkt der Diagonalen in Höhe des Scheitels, nicht in Höhe der Basis, gehandelt haben könnte.

Eine weitere Begründung, auf die hier näher eingegangen wird, behandelt die von ihm erwähnte Möglichkeit, dass es sich bei dem benannten Punkt um den Mittelpunkt für die Krümmung an der Innenseite der Ecke nach dem Maß "Quinto-Acuto" (Abb. 11) handelt, nach welchem die Wölbung der Kappen gemäß dem Baubeschluss von 1420 ausgeführt werden sollte.

Dies bedeutet, dass der Mittelpunkt für den Radius (Ri) der Wölbung im vierten Fünftel der Diagonale zwischen zwei gegenüberliegenden Ecken liegt.

Die Wölbung einer Kappe ergibt sich nun aus der Verbindung zweier nebeneinanderliegender Ecken, welche dann mit den ermittelten Radien "hochgezogen" werden (Abb. 11).

Wegen den erheblichen Schiefheiten des Basisachtecks (Abb. 12) musste Brunelleschi für jede Kuppelecke den zugehörigen inneren Diagonalbogen getrennt bestimmen.

Nur so war es möglich, dass die Bögen alle in gleicher Höhe bei der Laternenöffnung ankamen.

¹⁾ Zu sehen ist dieses Gelände noch ... (siehe obersten Absatz)

³⁾ vgl. das Aufmaß von PADELLI in "Opera di SMF … " 1939

Abb. 11 [Blatt 54b] QUINTO-ACUTO-BÖGEN (maßstäbliche Darstellung Stephan / Ebering)

Diese Bestimmung der Mittelpunkte hat Brunelleschi mit großer Wahrscheinlichkeit unter Zuhilfenahme seines Ufermodells vorgenommen, wobei er die vorhandenen Höhenabweichungen berücksichtigt haben könnte, die in Abbildung 12 gemäß dem Aufmaß von Giulio Padelli dargestellt sind, das 1939 von der "Opera di Santa Maria del Fiore di Firenze" veröffentlicht wurde (vgl. 1939, S. 54).

Die Abweichungen sind in folgender Skizze in Zentimetern angegeben.

Abb. 12 [Blatt 1149a] BASIS QUOTEN

(maßstäbliche Darstellung Stephan / Ebering nach Padelli in "Rilievi e studi", 1939)

Das von Stephan in Abbildung 13 maßstäblich dargestellte Ufermodell zeigt neben dem gegebenen achteckigen Basisgrundriss die Findung des Mittelpunktes im "Quinto-Acuto" auf der Diagonalen zwischen den Innenecken 1 und 5.

Mittels dieses Mittelpunkts wird die Wölbung der Kuppel in der Innenecke 1 erreicht, welche im Aufriss (gestrichelte Darstellung) gezeigt wird.

Eine solche Darstellung hätte es Brunelleschi ermöglicht, die Scheitelhöhe exakt zu ermitteln und deren Einhaltung zu kontrollieren.

Abb. 13 [Blatt 1130] UFERMODELL (maßstäbliche Darstellung Stephan / Ebering)

Einführend sind hier bereits die Bezeichnungen benannt, die für die weiteren Berechnungen relevant sind.

- L/2 = Hälfte der Breite Laternenöffnung
- S/2 = Hälfte der Seitenlänge
- Ri = Radius zur Innenecke
- D/2 = Abstand von einer Innenecke zur Kuppelachse
- a = Abstand von der Kuppelachse zum Mittelpunkt
- M = Mittelpunkt im "Quinto-Acuto" einer Diagonale

 $T_A = 3,1551$ (URSPR. PLANUNG.)

 $T_1 = 10 \text{ br} \cdot 0.5 \div \cos 22.5^\circ$

$Z_4 = \sqrt{R^2 + (\alpha + \tau_4)^2}$
$Z_2 = Z_A + Z_M$
Z3 = Z2 - Ze
$Z_e = \Delta R_N \div cos (90 - \infty)$

AUFMASSE

8 0G	R	م	ZM	Ri-RN
1	36,79 75	14,5788	0,2302	- 0,21
2	36,4283	13,8033	0,1407	-0,14
3	36,1730	13,36 9 1	0,2817	-0,20
4	36,6116	13,9175	0, 05 96	- 0,30
5	36,2777	13,4975	0,2000	- 0,18
6	35,9797	13,13 <i>5</i> 5	0,0500	+0,08
7	36,3207	13,7047	0,0602	- 0,01
8	36,6341	14,3935	0,1983	-0,12
\$ (8)	36,4028	13,8000	0,1526	-0,14

BERECHNUNG (# 8 BÖGEN)

B 04	R ²	$(a + \gamma_4)^2$	Z,	Z2	₹₃	Ze
1	1354,056	314,4912	32,2423	32,4725	32,2325	-0,24
2	1327,0210	287,5873	32,2402	32,3809	32,2209	-0,16
3	1308,4859	273,0492	32,1782	32,4599	32,2299	- 0,23
4	1340,4093	291,4737	32,3873	32,4469	32,1069	- 0,34
5	1316,0715	277,3091	32,2298	32,4298	32,2298	- 0,20
6	1294,5388	265,3836	32,0804	32,1304	32,22.04	+0,09
7	1319,1932	284,2529	32,1705	32,2307	32,2207	- 0.01
8	1342,0573	307,9534	32,1575	32,3558	32,2158	-0,14
Ø.(8)			32,2408	32,3634	32,2096	0,14

Abb. 14 [Blatt 1457] ENTSTEHUNGSPHASEN DER SCHEITELHÖHE

(Darstellung Stephan / Ebering)

In Abbildung 14 sind die Berechnungsgrundlagen und die Ergebnisse für die Scheitelhöhen dargestellt.

Zuerst wird mit Hilfe des Pythagoras die Höhe z1 berechnet, die durch den Radius R_N und den Abstand a zzgl. der halben Laternenöffnung r1 entsteht.

Zu dieser Höhe wird die Höhenabweichung vom Basisgrundriss z_M addiert und man erhält die Höhe z_2 , die der Höhe zwischen Basis und der gefundenen Scheitelhöhe entspricht.

Bevor man nun die Höhe z_3 berechnen kann, muss man noch die Abweichung z_e ermitteln, wozu man die Differenz aus R_i und R_N und den Winkel α benötigt. Unter Anwendung des Kosinussatzes erhält man die Abweichung von der Höhe z_1 und der Höhe z_2 .

Abschließend muss man die berechnete Höhendifferenz z_e noch von der Höhe z_2 abziehen, um die Höhe z_3 zu berechnen.

Die hierfür benötigten Werte für R, a und z_M wurden aus den von Ferri aufgemessenen Daten mit Hilfe von Computerberechnungen ermittelt und auf ihre Richtigkeit geprüft.

Auf diese Vermessung wird, wie bereits erwähnt, im Kapitel 4 eingegangen.

Durchschnittlich ergibt sich nach den Berechnungen von Stephan eine Höhe von 32,2096 m zwischen Basis und Scheitelhöhe. Die von Ferri fotogrammetrisch gemessene Höhe beträgt vom Fußboden zum Scheitel 86,68 m. Unter Berücksichtigung des Sichtschattens der Konsole ergibt sich, wie in Abbildung 15 verdeutlicht, eine Scheitelhöhe von 32,22 m über der Basis. Die Annahme, dass die Wölbung der Diagonalbögen mit jeweils einem einzigen Radius er-

zeugt worden sein kann, wäre somit mathematisch nachvollziehbar.

Abb. 15 KUPPELHÖHE (maßstäbliche Darstellung Stephan / Ebering, Höhen gem. Fotogrammetrie von W. Ferri, 1971)

Wie aber war eine so exakte Messung in einer Höhe von 54 Metern möglich? Diese Frage wird bis heute in der Fachwelt hypothetisch behandelt und bietet nach wie vor Spielraum für unterschiedliche Interpretationen.

Braunfels stellt die These auf, dass die Radien mit Hilfe von Eisenketten vermessen wurden. Di Pasquale dagegen favorisiert die Möglichkeit, dass in der Mittelachse der Kuppel eine Stange senkrecht fixiert wurde (vgl. KRÄMER 2001, S. 76).

Stephans Theorie schließt sich der Hypothese von Saalmann und Mainstone an, welche besagt, dass die innere wie auch die äußere Schale mit einem "gualandrino con tre corde" vermessen wurden (vgl. SAALMANN 1980, S. 114, S. 125; MAINSTONE 1977, S. 77).

Dieses in den Überlieferungen "gualandrino con tre corde" genannte Gerät wird somit als Vermessungswerkzeug interpretiert (Abb. 17 und Abb. 18), mit dem man unter Anwendung einer Dreieckskonstruktion aus Seilen (Seiltriangulation) einen Punkt einmessen konnte, der in einem vorher definierten Abstand zum Mittelpunkt lag.

Dieser Mittelpunkt wurde nach Annahme von Stephan auf vorübergehend angebrachten Messkanzeln (Abb. 16) fixiert, welche in der Tat in den Dokumenten als hölzerne Rahmen erwähnt sind.

Das Instrument wurde wahrscheinlich auf hölzernen Tragrüstungen in der bis dahin beim Bau erreichten Höhe aufgestellt und das Seil mit der Länge des ermittelten Radius wurde an dem Lehrbogen eingehakt. Das andere Ende des Seiles wurde nun auf den Mittelpunkt gerichtet und der Lehrbogen, entsprechend der Länge des Seiles, justiert. Dies erfolgte mit Hilfe einer Feineinstellung. Nun konnte an der Wange des Lehrbogens die Kappe in der erforderlichen Wölbung hochgemauert werden.

Um ein gleichmäßiges Ansteigen der Kuppel zu gewährleisten, ist anzunehmen, dass dieses Verfahren in allen acht Ecken gleichzeitig durchgeführt wurde. Denn nur so wäre eine selbststützende Funktion erreichbar gewesen.

Nachdem die Kuppel dann umlaufend um 1,75 m (3 Ellen) gewachsen war, begannen acht weitere Bauabschnitte, in denen die Geräte in der nun erreichten Höhe erneut justiert wurden und die Kappen um weitere 1,75 m anstiegen.

Abb. 17 [Blatt 1139a] GUALANDRINO (perspektivische Freihandskizze Stephan)

Der Name "Gualandrino con tre corde" stammt nach Annahme von Stephan daher, dass für die Bestimmung der Punkte insgesamt drei Seile benutzt wurden, die alle am Lehrbogen eingehängt wurden.

Ein Seil (die Messleine) hatte die Länge des Radius für die geplante Wölbung und zwei weitere Seile wurden, wie in Abbildung 16 dargestellt, als Leitseile benötigt.

Die Länge der Leitseile hätte entsprechend des Pythagorassatzes ermittelt werden können, da die Grundbedingungen für die Anwendung des Satzes durch den vorliegenden rechten Winkel neben dem Mittelpunkt und die Länge der Messleine gegeben waren.

Die Distanz vom Mittelpunkt zum Ende eines Leitseiles war variabel wählbar und lag in der Größenordnung einer halben Seitenlänge einer Kappe. Dieser Punkt konnte, ebenso wie der Mittelpunkt, auf der umlaufenden Messkanzel fixiert werden.

Unter Nutzung dieser Möglichkeit wäre somit eine rechnerisch ermittelte Kontrollmöglichkeit gegeben gewesen.

Ergänzungen von 1426 (vgl. BATTISTI 1979, S. 363)

- auf jedem zweiten Gang soll eine Kette aus (Natur-) Steinen gemacht werden
- auf jeder Seite soll ein Auge mit dem Durchmesser von 1 Elle = 0,59 m gemacht werden, um das Erstellen von Arbeitsbühnen für die Mosaiken und andere Arbeiten zu erleichtern und um die Besichtigung des Kircheninnenraums zu ermöglichen
- zu jedem Auge soll ein Gang von 1 1/8 Ellen (0,66 m) Breite führen, der zunächst zugemauert und später wieder geöffnet wird
- die Türstürze über den Türen im zweiten Gang sollen 1 Elle (0,58 m) hoch sein, um die Ganzheit der Krümmung erkennbar zu machen
- die Ringanker aus (Natur-) Stein sollen eine Breite und Höhe von ¾ Ellen = 0,44 m haben und darüber eine Kette aus Eisen bekommen
- die Mauerung im Fischgrätenverband wird veranlasst
- die Innen- und Außenschale soll mit Hilfe von drei Leinen gemauert werden ("con gualandrino con tre corde")
- durch eine Erweiterung der Laterne soll der Lichteinfall ermöglicht werden

Aus damaliger Sicht stand Brunelleschi vor einer immensen Herausforderung: Die Umrisse für die gesamte Kuppel auf der Baustelle festzulegen sowie die Vorgaben des Bauprogramms einzuhalten.

"Die Koordinierung musste in zwei Richtungen durchgeführt werden, und zwar horizontal so, daß die Breite der Kappen des Oktogons proportional mit dem allmählichen Wachsen der Kuppel abnahm, wobei aber die Ausrichtung dieser Seiten auf die Eckrippen bewahrt und die vertikale Steigung in der richtigen Krümmung eingehalten werden mussten" (BATTISTI 1979, S. 138). Außerdem mussten die Höhenunterschiede an den Seiten des bereits bestehenden Tambours korrigiert werden, bei denen erhebliche Unregelmäßigkeiten vorlagen (ebd.).

Abb. 1 [Blatt 854a] KLOSTERKUPPEL (Skizze Stephan / Ebering)

<u>MITTELWERTE :</u> L = 5, 83 $R_i = 36, 40$ z = 32, 2.2

Die Hauptmaße sowie alle relevanten Maße, auf denen diese Studie basiert, stammen aus der Fotogrammetrie von W. Ferri / M. Fondelli 1971, worauf in Kapitel 4 näher eingegangen wird.

Zum besseren Verständnis ist an dieser Stelle bereits anzumerken, dass bei der Fotogrammetrie von unten ein Sichtschatten bis 4,50 m über der Basis (Abb. 5) entstand. Die unterste, maßtechnisch genau erfasste Ebene von +4,50 m über Basis wird "Fond" genannt und für erste Berechnungen benutzt.

Alle Maße in Höhe des "Fonds" sind in Abbildung 33 in Kapitel 4 dargestellt.

Einzige genaue Quelle für die Innenmaße der Basis, mit Seitenlängen und Eckwinkeln sowie Höhenquoten der acht Ecken sind die Aufmaße von Giulio PADELLI, die 1939 von der Opera di Santa Maria del Fiore di Firenze veröffentlicht wurden (vgl. 1939, S. 54). Die Messpunkte des Achtecks liegen hier jeweils 0,40 m vor der Innenseite der Außenschale der Kuppel.

Die für diese Studie relevanten Maße sind die von Padelli gemessenen Basis-Quoten, auf die in Kapitel 2 genauer eingegangen wird.

Des Weiteren hat Stephan eigene Aufmaße genommen, die hauptsächlich zur Ermittlung der Kuppel-Außenformen dienten. Diese nötigen Gewölbedicken waren nur im Querschnitt messbar, da die massiv gemauerten Eckrippen im Diagonalschnitt den Zugang verwehrten. Die Umrechnung der Querschnittsmaße in Diagonalschnittmaße erfolgt mittels "Faktor F", worauf in Kapitel 5 näher eingegangen wird.

Abb. 3 [Blatt 721.1] ANORDNUNG DER RIPPEN IM GRUNDRISS (Stephan / Ebering mit Treppendarstellung nach G.B. Nelli, 1733, Fig. XII)

Abb. 4 [Blatt 721.2] QUERRIPPEN IN EINEM SEKTOR

(maßstäbliche Darstellung Stephan / Ebering)

Die Kuppel ist von Brunelleschi als eine zweischalige Klosterkuppel mit einem Zwischenraum geplant. Diese Konstruktion besteht aus einer am Fuß 2,23 m dicken Innenschale, die sich bis zum Scheitel auf 2,14 m verjüngt. Die Außenschale hat am Fuß eine Dicke von 0,93 m und verringert diese auf 0,60 m an der Scheitelöffnung.

Der Zwischenraum hat am Fuß eine Tiefe von 1,21 m. Darin befinden sich insgesamt 8 Eckrippen und 16 senkrechte Mittelrippen, die am Fuß eine Breite von 1,96 m haben. Die Mittelrippen sind durch jeweils 9 waagerechte Querrippen mit den Eckrippen verbunden (Abb. 4).

In dem Schalenzwischenraum sind des Weiteren Treppen untergebracht, die über 463 Stufen bis zur Laterne hochführen (Abb. 3).

Ebenfalls befinden sich im Zwischenraum 4 Umgänge. Neben dem untersten Umgang (U1) in einer Höhe von 3,21 m über der Basis und dem obersten (U4), der 33,54 m über der Basis liegt, gibt es die Umgänge U2 in einer Höhe von 11,95 m über der Basis und U3, der sich 23,32 m über der Basis befindet.

Auf den Umgängen 2 und 3 gibt es in jeder Kappe ein so genanntes Auge, durch das man in den Kuppelinnenraum sehen kann. Zu diesen Augen führen 0,60 m breite Gänge durch die Innenschale (Abb. 5).

Damit am Endpunkt der Treppe auf den obersten Stufen eine ausreichende Durchgangshöhe gewährleistet wird, ist der Zwischenraum dort nicht wie geplant 1,36 m, sondern 1,49 m tief.

Der vom Bauprogramm geforderte Materialwechsel findet sich in einer Höhe von ungefähr 5,50 m über der Basis.

Durch die Zweischaligkeit, die Mauerung im Fischgrätenverband sowie die Verbindung der Konstruktionselemente untereinander gelang Brunelleschi die architektonische Meisterleistung, die Kuppel ohne Standgerüste zu erbauen.

Von außen sieht man von dieser gewaltigen Konstruktion "lediglich" acht Marmorrippen, die Sporne. Sie haben jeweils eine Gesamtbreite von 1,75 m (Abb. 7). Gegebener Maßen sind sie die Fortführung der Eckrippen und bilden einen eindrucksvollen Kontrast zu der roten Dachziegelfläche, mit der die Außenschale bedeckt ist (Foto 3 und 4).

Der Abschluss der Kuppel ist die monumentale Laterne, die über der 5,83 m weiten Scheitelöffnung in einer Höhe von 36,14 m über der Basis errichtet wurde und über die Treppenanlage in der Innenschale erreichbar ist (Foto 1 und 2).

Die begehbare Plattform der Laterne ist die Oberseite des verbindenden Schlusssteines zwischen den Kappen und der Laterne. In seiner Funktion als Schlussring (Abb. 8) nimmt er den Horizontalschub der Kappen auf.

Abb. 5 [Blatt 894] QUERSCHNITT MIT LATERNE (Stephan / Ebering nach Original von Stegmann-Geymüller, 1887)

Konstruktionsprinzip

Das in Abbildung 6 maßstäblich dargestellte Explosionsmodell zeigt die einzelnen Konstruktionselemente und veranschaulicht, wie sie zusammengefügt worden sind.

Die Basis der gesamten Konstruktion ist zunächst einschalig und hat am Fuß eine Dicke von 4,20 m. Bis zum Beginn der zweischaligen Konstruktion verstärkt sie sich auf 4.37 m. Die Gesamtdicke der sich nach oben hin verjüngenden Schalen beträgt an der Scheitelöffnung nur noch 4,23 m.

Die Seitenlängen der einzelnen Kappen verjüngen sich horizontal von einer durchschnittlichen Seitenlänge von 17,32 m auf 2,41 m.

Die Wölbung der Kuppel entstand mittels eines durchschnittlichen Radius von 36,40 m. Der Schlussring fügt sich passgerecht in die Scheitelöffnung ein und ist ein oktogonaler Druckring, der wie bereits erwähnt den Horizontalschub der Kappen aufnimmt (FANELLI 2004, S. 179). In ihm befindet sich der oberste Umgang (U4) in einer Höhe von 33,54 m über der Basis. Den eindrucksvollen Abschluss bildet die begehbare Laterne.

Abb. 6 [Blatt 779] KONSTRUKTIONSTEILE EINES SEKTORS (maßstäbliche Freihandskizze Klaus Stephan) Die Treppe im Inneren der Kuppel befindet sich zwischen der inneren und der äußeren Schale. Der Aufstieg beginnt im südlichen Sektor der Kuppel und endet mit dem Austritt im westlichen Sektor (Abb. 3). Die Steigung verläuft bis auf den letzten Abschnitt quer zum Gewölbe. Nur im letzten Abschnitt, zwischen dem dritten und dem vierten Umgang, steigt man praktisch direkt mit der Gewölbekrümmung - also auf dem Rücken der Innenschale - aufwärts (Fotos 1 und 2).

1

TREPPENVERLAUF

Sporn und Plattform

In der von Stephan gelesenen Fachliteratur gab es für ihn keine hinreichenden Angaben über die existierenden Höhenverhältnisse zwischen dem Kuppelinneren und der Plattform außen. Gemäß seinen Nachforschungen ist die Standplatte der Säule (Plinthe) im Innenraum der Laterne bislang nicht in Abhängigkeit zu dem Gefälle der Plattform berücksichtigt worden. Dieses in den Fotos 5-7 aufgezeigte Gefälle sowie die Plinthe sind hinsichtlich ihrer existierenden Höhen in Abbildung 8 veranschaulicht.

Ebenso sah sich Stephan veranlasst, die existierenden Maßangaben zum Sporn in einer Detailzeichnung zu veranschaulichen (Abb. 7).

4

DACHFLÄCHE MIT SPORN

Abb. 7 [Blatt 1400] SPORN, IDEALFORM

(Zeichnung Klaus Stephan)

Baubeschreibung

Abb. 9 [Blatt 1284] PLATTFORM (Grundriss Laterne Stephan / Ebering nach Stegmann-Geymüller, 1887)

5

7

PLATTFORM

Mauerungstechniken

Nachdem im vorangegangenen Kapitel hypothetisch die Vorgehensweisen zur Maßfindung und zur Durchführung des Baus der Domkuppel veranschaulicht wurden, soll dieses Kapitel die tatsächliche Bauausführung Brunelleschis darstellen, mit der er der Kuppel ihre selbsttragende Funktion gegeben hat. Hier liegen gesicherte Erkenntnisse vor, weil im Zuge neuerer Restaurierungsarbeiten Originalmauerwerk freigelegt worden ist.

Brunelleschi als "Freund und Schüler des Mathematikers Paolo dal Pozzo Toscanelli" (FANELLI 2004, S. 212) und selbst "Erfinder der geometrischen Perspektive" (ebd.) hatte erkannt, welches Zusammenspiel von Konstruktion und Funktion notwendig war, um die Stabilität der Kuppel zu gewährleisten

Durch sein räumliches Verständnis wurde ihm bewusst, dass es besonderer Mauerungstechniken bedurfte, um die konstruktiven Elemente Tambour, Innen- und Außenschale, Rippen und Anker kraftschlüssig miteinander zu verbinden. Die so genannte Fischgrätentechnik (Abb. 23 und Abb. 24) erfüllte diese verbindende Funktion und hatte darüber hinaus eine stützende Wirkung, da das Mauerwerk girlandenmäßig nach dem Konusprinzip (Abb. 19) angelegt wurde. Somit wurde das Wegrutschen der Ziegel im frischen Mörtelbett verhindert (vgl. FANELLI 2004, S. 191).

Abb. 19 [Blatt 1230] KONUSPRINZIP (maßstäbliche Darstellung Stephan / Ebering)

Die Ziegellagen befinden sich hier sozusagen auf der Durchdringungskurve, die entstehen würde, wenn ein Kreiskegel das Mauerwerk schneidet. Die Spitze des Kegels ist nach unten gerichtet und seine Achse stimmt mit der Kuppelachse überein (vgl. FANELLI 2004, S. 187). Die Oberflächen der Ziegellagen verlaufen somit nicht horizontal von einer Ecke zur anderen, sondern "hängen" wie Girlanden durch.

Abb. 20 [Blatt 1249] INNENGIRLANDE (maßstäbliche Skizze Stephan / Ebering)

Dieser "Durchhang" wurde von Stephan auf dem Umgang U2 in einer Höhe von 85 cm auf der Außenseite der Innenschale gemessen und betrug insgesamt 15 cm.

Bei Restaurierungsarbeiten, die 1980 an der Dachfläche vorgenommen wurden, war ein Teil der roten Ziegelfläche abgedeckt und man konnte die freigelegte Außenseite der gemauerten Außenschale sehen. Auf dem Foto von Salvatore Di Pasquale (vgl. FANELLI 2004, S. 98/73) erkennt man deutlich den Fischgrätenverband und die girlandenmäßige Abwicklung der gemauerten Außenschale.

Abb. 21 [Blatt 1237] FOTO DER ABGEDECKTEN AUßENSCHALE (Aufnahme: Salvatore Di Pasquale, 1980)

Die Abbildung 22 ist als transparentes Deckblatt zur Abbildung 21 zu verstehen. Sie zeigt oben die scharfen Konturen der Dachziegel, darunter die senkrechten sowie die horizontalen Mauerziegel. Die punktierte Linie kennzeichnet den bereits beschriebenen "Durchhang". Da er auf der Außenschale zu finden ist, wurde von Stephan die Bezeichnung "Außengirlande" gewählt.

Abb. 22 [Blatt 1237 b] AUßENGIRLANDE (Deckblatt zu Abb. 21, Stephan)

Abb. 23 FISCHGRÄTENMAUERWERK (Darstellung nach Sanpaolesi) Bauausführung

Diese Mauerungstechnik, wie in Abbildung 23 (vgl. FANELLI 2004, S. 98/72) von Sanpaolesi dargestellt, ist nachweislich im Hohlraum der Schalen aufzufinden. Zum einen sieht man sie in den Umgängen auf der Außenseite der Innenschale und auf der Innenseite der Außenschale (Foto 8).

Als das Fresco im Innenraum der Kuppel wegen Restaurierungsarbeiten abgebrochen wurde, konnte man auch hier den Fischgrätenverbund erkennen.

Ebenso war der Fischgrätenverband an der Außenseite der Außenschale erkennen, als diese, wie bereits erwähnt, bei Restaurierungsarbeiten an der Dachfläche 1980 freigelegt wurde (Abb. 21).

8

FISCHGRÄTENMAUERWERK

Fischgrätenverband, der anlässlich von Gewölberestaurierungsarbeiten in einer Höhe von 15 m über Umgang 3 in der Ecke 3 freigelegt wurde (vgl. FANELLI 2004, S. 190/1.5.5)

Die Mauerung im Fischgrätenverband beginnt in einer Höhe von ungefähr 12 m über Basis. Die liegenden Ziegel werden bei dieser Technik in einer regelmäßigen Folge durch vier senkrecht stehende Ziegel unterbrochen. Diese nebeneinander stehenden Ziegel sind jeweils um die Höhe eines liegenden Ziegelsteines versetzt. Die senkrechten Steinlagen geben somit dem Mauerwerk seinen Namen, da sie im Verbund mit den liegenden Steinen wie Fischgräten aussehen (Abb. 24).

Anhand des sichtbaren Mauerwerks war festzustellen, dass sich in einer Kuppelseite jeweils zehn gleich breite Abschnitte mit liegenden Mauerziegeln zwischen den aufrecht stehenden Ziegellagen befinden.

Die liegenden wie auch die aufrecht stehenden Ziegelschichten sind entsprechend des Neigungswinkels ß geneigt, der die Neigungsgerade h und die Basisgerade w umschließt. Die beiden Geraden h und w sind im Querschnitt zu finden; sie liegen also in der jeweiligen Mitte einer Kappe.

Der Winkel α liegt entsprechend im Diagonalschnitt und wird umschlossen von der Gerade, die der Radius Ri beschreibt und der Gerade, die auf dem Radius r_{BASIS} liegt.

(HÖHENMASSE ÜBER BASIS) 2)

	TESTPUNKTE	T1	T2	T3	T4	T5
gegeben:	zī n. Aufmaß ²)	12,95	13,85	26,82	30,5112	33,9386
	Σ _d [1292]	2,23	3,42	2,23	4,09	3,63
	F [884 a] ¹) ²)	1,0724	1,0717	1,0409	1,034	1,0218
Berechnung:	$\alpha_T = asin (z_T - z_M) / (R_i + \sum d \cdot F)$	19,2627°	19,9927°	43,5273°	48,3484°	57,3838°
	$\beta_T = atan (tan \alpha_T / \cos \Psi)$	20,7216°	21,4945°	45,7938°	50,5880°	59,4073°
	$r_i = R_i \cdot \cos \alpha_T - \alpha$	20,5642	20,4077	12,5957	10,3933	5,8211
	$z_i = R_i \cdot \sin \alpha_T + z_M$	12,1619	12,5987	25,2232	27,3548	30,8147
	$w_i = r_i \cdot \cos \beta_T$	18,9993	18,8547	11,6372	9,6023	5,3781
	$h = w_i / \cos \beta_T$	20,3136	20,2629	16,6913	15,1241	10,5681
	$s = 2 \cdot w_i \cdot \tan \Psi$	15,739	15,6192	9,6403	7,9545	4,4552
errechnet:	s / 10	1,57	1,56	0,96	0,80	0,45
aufgemessen:	s gem. Aufmaß	1,41	1,32	0,95	0,89	0,45

¹) ZUNÄCHST SCHÄTZUNG VON F FÜR α NACH TABELLE [884], DANN ITERATION GEM: F = sin β / sin α ²) SIEHE KAPITEL 5 "FAKTOR F"

Abb. 24 [Blatt 1265] FISCHGRÄTENSCHICHTEN - ABSTÄNDE

Im unteren Teil der Abbildung 24 sind die Berechnungsgrundlagen zu finden, mit denen die Abstände zwischen den senkrechten Ziegellagen ermittelt wurden.

Als Grundlage dienten fünf Testpunkte, bei denen die Höhen (zī) gemäß dem Aufmaß nach Ferri eindeutig zuzuordnen waren und die Schalendicke bis zum Testpunkt eindeutig ermittelt werden konnte. Des Weiteren bestand bei den Testpunkten die Sicherheit, dass die Anzahl der Abstände innerhalb eines Sektors tatsächlich zehn betrug.

Die Lage der Testpunkte ist auf der Skizze "Aufmaßorte" dargestellt. Hier ist zu entnehmen, ob sich der jeweilige Testpunkt auf der Außenseite der Innenschale oder auf der Innenseite der Außenschale befindet. Testpunkt vier befindet sich als Einziger auf der Außenseite der Außenschale.

Die Schalendicke bis zur Lage des Testpunktes kann gemäß Abbildung 26 nachvollzogen werden.

Die Gewölbedicken sind dort in einem überhöhten Querschnitt dargestellt. Die Höhen wurden im Maßstab 1:200, die Dicken im Maßstab 1:150 aufgetragen.

Die eingetragenen Maße sind gemittelte Durchschnittswerte für alle acht Sektoren, welche aus dem von Ferri gemachten Aufmaß stammen.

Die Aufmaßwerte, die in den Formeln benutzt werden, werden eingehend in Kapitel 4 betrachtet. Der verwendete Faktor F wird in Kapitel 5 erläutert.

Zum besseren Verständnis sei an dieser Stelle schon einmal gesagt, dass es sich beim Faktor F um einen Umrechnungsfaktor der Gewölbestärke vom Querschnitt in den Diagonalschnitt handelt.

Da in den dargestellten Berechnungen zur Ermittlung der Fischgrätenabstände die Gewölbedicke zum Radius R_i addiert werden muss, wird die Gewölbedicke im Diagonalschnitt benötigt. Diese Werte konnten wegen der Unzugänglichkeit der Eckrippen jedoch nicht ermittelt werden.

Somit musste ein Umrechnungsfaktor für die Gewölbestärke vom Querschnitt in den Diagonalschnitt hergeleitet werden. Diese Herleitung ist im Kapitel 5 dargestellt.

Ebenfalls werden für die Anwendung der Formeln die in Abbildung 24 oben angegebenen Grundwerte benötigt.

Diese Grundwerte sind Durchschnittswerte, die aus den Maßen aller 8 Bögen berechnet wurden und ebenfalls im Kapitel 4 in Abbildung 47 zu finden sind und dort entsprechend erläutert werden.

Die angegebenen Formeln wurden entsprechend den trigonometrischen Funktionen (Sinus-, Kosinus- und Tangenssatz) und deren Umkehrfunktionen aufgestellt.

Zum Vergleich wurden von Stephan die Abstände der senkrechten Steinschichten vor Ort genommen.

Abschließend ist festzustellen, dass die Abweichungen der rechnerischen Ergebnisse von den gemessenen Abständen lediglich im Zentimeterbereich liegen.

Die ermittelten Abstände der Testpunkte 2, 3 und 5 sind in Abbildung 25 maßstäblich dargestellt. Angegeben sind immer die Seitenlängen des jeweiligen Sektors, in dem sich der Testpunkt befindet und die Dicke des Gewölbes.

Des Weiteren findet man unter den Zeichnungen die Höhe von der Basis bis zum Testpunkt und den entsprechenden Neigungswinkel ß.

Die Werte auf der Seitenhalbierenden entsprechen der Länge hin Abbildung 24.

Angegeben wird die im Neigungswinkel verlaufende Distanz von der Kuppelachse bis zur Gewölbeinnenschale.

Abb. 25 [Blatt 1266] FISCHGRÄTEN - SPREIZUNG

(maßstäbliche Darstellung Stephan / Ebering)

QUERSCHNITT (GEWÖLBEDICKEN ÜBERHÖHT GEZ.)

Abb. 26 [Blatt 1292] GEWÖLBEDICKEN

(maßstäbliche Darstellung Stephan / Ebering)

Die Abbildung 27 zeigt den Idealverlauf der Fischgrätenschichten, der sich aus den Berechnungen Stephans ergeben würde. Dargestellt sind die Verlaufslinien der senkrecht gestellten Ziegel, die sich spiralförmig nach oben winden.

Diese Spiralform entsteht dadurch, dass die aufrecht stehenden Ziegel jeweils um die Höhe eines liegenden Ziegelsteines versetzt sind.

Zum Zeitpunkt der Darstellung ging Stephan davon aus, dass es sich um 13 senkrecht nach oben verlaufende Ziegelschichten handeln würde.

Leider konnte Stephan die notwendigen Berechnungen für die tatsächlich vorhandenen 11 Schichten und die damit verbundene aufwendige Darstellung nicht mehr aktualisieren.

Links neben der Darstellung befindet sich immer der Wert des Neigungswinkel ß für die jeweils berechnete Ziegelschicht. Die entsprechende Seitenlänge, die waagerecht gestrichelt ist, ist rechts angegeben. Unter diesem Wert befindet sich der dazugehörige Wert des Durchhangs der Girlanden, der in der Mitte der Seite am höchsten ist und ebenfalls gestrichelt dargstellt wurde.

Dieser Fischgrätenverlauf ist entsprechend in der folgenden Abbildung (vgl. Rossi 1982, S. 25) nachzuvollziehen.

Abb. 28 KUPPELSTRUKTUR NACH P.A. ROSSI

(Darstellung nach Paolo Alberto Rossi)

Fotogrammetrisches Aufmaß

Dieses Kapitel soll dem Leser dazu dienen, sich ein Bild über den Ursprung und den Nutzen der Aufmaße von Ferri und Fondelli zu machen, die Stephan als Hauptquelle für seine Studie genutzt hat.

Des Weiteren erfolgt eine Auswertung dieser fotogrammetrischen Maße mit dem Ziel, rechnerisch zu belegen, dass die Krümmung der Eckrippen einer Kreiskurve entspricht, die mit jeweils einem bestimmten Radius von der Basis bis zum Scheitel ausgeführt worden sein kann, ohne dass eine gewollte Versetzung des Mittelpunktes stattgefunden hat.

Diese Radien konnten unter bestimmten Prämissen von Stephan für alle 8 Bögen ermittelt werden. Die hierfür vorgenommenen Rechnungen sowie die jeweiligen Prämissen sollen im Verlauf dieses und des folgenden Kapitels dargestellt werden.

Durch die 1971 veröffentlichen Ergebnisse der fotogrammetrischen Vermessung hatte Stephan die Möglichkeit, seine Thesen mathematisch nachzuvollziehen.

Die fotogrammetrischen Aufnahmen und ihre Auswertungen erfolgten unter der Leitung von Mario Fondelli.

Die Untersuchungen wurden ermöglicht durch die Unterstützung der Officine Galileo di Firenze, der E.I.R.A. di Firenze und des Centro Scientifico IBM di Pisa (vgl. FERRI 1971, S. 163).

Aufgenommen wurden die beiden Fotografien der Gewölbeinnenseite (Abb. 30) am 12. November 1968 von Ingenieur Walter Ferri (Abb. 29) unter Verwendung eines Fototheodolits der Serie FTGIb (ebd., S. 165). Dieser Apparat mit vier Neigungen bot die Möglichkeit, den Kameras eine Richtung direkt zum Zenit des Stationspunktes zu geben und sie außerdem in ein und derselben horizontalen Ebene x, y zu nivellieren (ebd., S. 164). Aufgestellt war der Theodolit im Presbyterium am Fußpunkt der Kuppelachse (Abb. 15, Kapitel 2). Die Doppelkameras waren 13,16 m (ebd.) voneinander entfernt (Abb. 31).

Ziel dieser Aufnahmen und der entsprechenden Untersuchungen war es, exakte Aussagen über die charakteristische Geometrie und Struktur der Kuppel von Santa Maria del Fiore machen zu können.

Die graphische Darstellung des inneren Gewölbes erfolgte mittels Höhenlinien, die in einem gleichmäßigen Abstand von 1m aufgetragen wurden. Anschließend wurden alle 8 Ecken entsprechend der Höhenlinien numerisch erfasst (ebd., S. 170). Dies erfolgte mit den instrumentalen Koordinaten x, y und z.

Die jeweils 59 Koordinatenpaare (ebd., S. 187-210) für die Innenmaße in den 8 Ecken der Kuppel sind vor der Übernahme in die Studie mit Hilfe von Computerberechnungen auf Basishöhen umgerechnet worden. Die Anforderungen an Genauigkeit und Handhabbarkeit führten zu Werten mit vier Dezimalen.

Ebenfalls wurden die von Ferri ermittelten horizontalen Abstände von den jeweiligen Eckpunkten bis zur senkrechten Mittelachse (r_P) in dieser Studie benutzt (Abb. 34).

Für die Übernahme der von Ferri aufgemessenen Werte wurde die übliche Darstellung der senkrechten Projektion von oben auf den Basis-Grundriss in Höhe der Galerie "B 3" gewählt, also das Spiegelbild der von unten nach oben gerichteten Fotogrammetrie.

Infolge dessen mussten im Koordinaten-System x und y vertauscht werden.

Weiterhin stand als Projektionsebene die Basis zunächst noch nicht zur Verfügung, weil bei der Fotogrammetrie durch den Blick von unten ein Sichtschatten bis 4,50 m über der Basis entstand, da die Konsole an dieser Stelle in das Kuppelinnere hinein ragt (Abb. 15, Kapitel 2). Diese unterste, maßtechnisch genau erfasste Ebene von +4,50 m über Basis wurde, wie bereits in Kapitel 1 erwähnt, "Fond" Abb. 33) genannt.

Abb. 29 FERRI MIT STEREOMETRIC-APPARAT (vgl. Ferri 1971, S. 165)

Abb. 30 FOTOGRAMME DES INNENGEWÖLBES (vgl. Ferri 1971, S. 166)

Abb. 31 ACHSMASZ THEODOLIT (Skizze Stephan / Ebering, gem. Ferri)

CRUNDRISS DES DOMES ZEICHNUNG NACH MARCHINI {1972} MASZE NACH FERRI ET AL {1971}

Abb. 32 [Blatt 898] GRUNDRISS DES DOMES MIT x, y- KOORDINATEN (maßstäbliche Darstellung Stephan / Ebering)

In Abbildung 32 ist zur besseren Orientierung das verwendete Koordinatensystem in den Grundriss des Domes (vgl. MARCHINI 1972, S. 30) eingetragen. Des Weiteren wurde die von Ferri gewählte Nummerierung der 8 Ecken übernommen, die im Uhrzeigersinn verläuft.

Die gestrichelte Linie stellt den vom "Fond" herunter projizierten Grundriss der Kuppel dar. Der kleinere durchgezogene achteckige Grundriss zeigt den Grundriss der Kuppel in Höhe der Scheitelöffnung.

Das angegebene Koordinatenpaar gibt die Lage der Kuppelachse an.

Der "Fond" - Grundriss (Abb. 32) enthält an den Eckpunkten die von Ferri ermittelten Koordinatenpaare und die dazugehörigen Angaben über die Länge der 8 Halbdiagonalen (r^P). Die weiteren Winkelangaben und die Seitenlängen sind mit Hilfe der trigonometrischen Funktionen und des Pythagoras-Satzes von Stephan berechnet worden.

Die angedeuteten Strichellinien an den Eckpunkten sollen die Lage der Basis darstellen, die, vom Fond aus betrachtet, etwa 29 cm weiter außen liegt.

"FOND"- GRUNDRISS zur fotogrametrie von ferri et al {1971}

1:300

2) BESSER SCHEITELÖFFNUNG, QUER: 5,8472 m, DIAGONAL: 6,3290 m

Abb. 33 [Blatt 989] "FOND" - GRUNDRISS

(maßstäbliche Darstellung Stephan / Ebering)

Im Folgenden soll nun die Vorgehensweise von Stephan erläutert werden, mit der er seine These begründet sieht, dass Brunnelleschi für jeden Bogen einen eigenen Radius ermittelt haben könnte, mit dem er der Kuppel ihre signifikante Form gab.

Zum besseren Verständnis der Bezeichnungen soll Abbildung 34 einen Überblick über die Lage der jeweiligen Benennungen geben, die alle im Diagonalschnitt zu finden sind, da sich die ermittelte Kreiskurve jeweils in den acht Kuppelecken befindet.

Abb. 34 [Blatt 839] BEZEICHNUNGEN IM DIAGONALSCHNITT (maßstäbliche Darstellung Stephan / Ebering)

Ausgehend von den von Ferri vermessenen Punkten (P) und den dazugehörigen Abständen zur Mittelachse (r) hat Stephan zunächst einmal alle Punkte eines Diagonalbogens zeichnerisch aufgetragen und hat anschließend einen Radius (R_N) mit dem Mittelpunkt (M) im Quinto Acuto Maß (QA) aufgetragen. Somit entstanden 8 Diagonalbögen, die durch jeweils unterschiedliche Näherungskreise beschrieben wurden. Diese Näherungskreise wiesen zu den aufgetragenen Punkten sichtbare Abweichungen (ΔR) auf, die es näher zu betrachten galt. Um klare Aussagen über die Näherungskreise und die auftretenden Abweichungen machen zu können, entschied sich Stephan, mathematisch an die Betrachtung heranzugehen.

Zunächst einmal musste nun für jeden Näherungskreis ein Radius (R_N) ermittelt werden, der möglichst geringe Abweichungen aufwies. Der zuvor mit Hilfe des Mittelpunktes im Quinto Acuto grob konstruierte Radius (R_N) sollte nun analytisch ermittelt werden. Hierzu stellte Stephan die mathematische Überlegung auf, dass ein Kreisbogen durch drei Punkte definiert ist. Also wählte er aus jedem Bogen drei signifikante Punkte aus, die keine Abweichung vom Näherungskreis aufzeigten. Es wurde jeweils ein Punkt aus dem unteren Bereich der Kuppel, einer aus dem mittleren sowie ein Punkt aus dem oberen Bereich der Kuppel gewählt.

In den Tabellen sind diese drei Nullpunkte jeweils umrahmt.

Entsprechend dem dargestellten Vorgehen in Abbildung 35 wurden nun für jeden Bogen die Werte für z_N , a_N und R_N errechnet.

z_N beschreibt dabei die Höhendifferenz von der Basis zum jeweils festgelegten Mittelpunkt. Der Abstand von der Kuppelachse zum Mittelpunkt wird durch den Wert a_N angegeben.

(maßstäbliche Darstellung Stephan / Ebering)

Im nächsten Schritt wurde nun für jeden Punkt der Radius R^P berechnet, indem die vorliegende Abweichung vom Näherungskreis addiert bzw. subtrahiert wurde.

Die ermittelten Werte für z_M , a_N und R_N sind für alle 8 Bögen auf den Abbildungen 36 bis 43 jeweils in der Mitte der Seiten aufgelistet.

Ebenfalls findet man sie in der Gesamtübersicht in Abbildung 47.

Pos.	Z	х	У	ГР	R p	ΔR (cm) ^{1.})	Abb. 36 [831.1]
1	32,25	62,7360	56,0360	3,1309	36,5910	(-21)	
2	32,00	62,0500	56,3200	3,8734	36,7396	(-6)	DIAGONALBOGEN
3	31,50	61,2420	56,6560	4,7485	36,7606	(-4)	1 INNEN
4	31,00	60,4520	56,9800	5,6023	36,7975	0	NÄHERUNGSKREIS
5	30,50	59,7400	57,2760	6,3734	36,8138	+2	
6	30,00	59,1140	57,5360	7,0512	36,7981	0	
7	29,50	58,4840	57,7960	7,7328	36,8039	+1	
8	29,00	57,8820	58,0440	8,3839	36,8101	+1	
9	28,50	57,3540	58,2640	8,9559	36,7840	-1	
10	28,00	56,8000	58,4980	9,5572	36,7928	0	
11	27,50	56,2840	58,7060	10,1136	36,7879	-1	
12	27,00	55,7420	58,9340	10,7015	36,8200	+2	
13	26,50	55,3460	59,0980	11,1302	36,7566	-4	
14	26,00	54,8180	59,3160	11,7014	36,8066	+1	
15	25,50	54,3920	59,4940	12,1631	36,7925	0	
16	25,00	53,9700	59,6660	12,6188	36,7865	-1	
17	24,50	53,5600	59,8400	13,0642	36,7852	-1	
18	24,00	53,1560	60,0060	13,5009	36,7896	-1	
19	23,50	52,7860	60,1580	13,9009	36,7774	-2	
20	23,00	52,3820	60,3240	14,3377	36,8052	+1	
21	22.50	52.0480	60.4620	14.6991	36,7850	-1	
22	22.00	51.7180	60.6000	15.0568	36.7721	-3	
23	21.50	51,3860	60,7380	15.4163	36.7710	-3	
24	21.00	51.0320	60,8860	15.8000	36.8002	0	
25	20.50	50 6940	61 0220	16 1643	36 8239	+3	
26	20.00	50.4200	61,1380	16,4619	36.8017	0	
27	19.50	50,1220	61,2620	16.7846	36.8101	+1	1 - 57:
28	19.00	49.8700	61,3660	17.0573	36,7851	-1	$R_N = 36.7975$
29	18.50	49.6000	61,4760	17,3488	36,7852	-1	$a_N = 14.5788$
30	18.00	49.3560	61.5780	17.6133	36,7708	-3	$z_{M} = 0.2302$
31	17.50	49 0780	61 6940	17 9145	36 7975		[1150]
32	17,00	48 8080	61,8060	18 2068	36 8255	+3	[1100]
33	16 50	48 6160	61,8840	18 4 1 4 0	36 7863	-1	
34	16,00	48 4140	61,0040	18 6336	36 7661	-3	
35	15,50	48 2020	62 0560	18 8623	36 7624	-5	
36	15,00	48 0000	62,0000	19 0811	36 7578	-4	
37	14 50	47,7940	62,1400	19 30/13	36 7653	-3	
38	14,00	47 5800	62,2200	19 5357	36 7886	-1	
39	13 50	47,0000	62,3140	19 7240	36 7800	-1	
40	13,00	47 2200	62,0000	19 9257	36 7917	-1	
40 41	12 50	47 0620	62,4040	20.0969	36 7825	-2	
42	12,00	46 8800	62,5000	20,0707	36 8056	+1	
13	11 50	46 7180	62,0000	20,2742	36 81 59	+2	
40	11,50	46,7100	62,0740	20,4077	36 7913	-1	
44	10.50	46,3700	62,7220	20,0010	36 8099	+1	
45	10,50	46,2980	62,7000	20,7070	36 8222	+2	
40	9.50	46 1380	62,0400	21,0976	36 8609	+6	
47	9,00	46,1000	62,7140	21,0770	36 8621	+6	
40 19	2,00 8,50	45,9800	62,7020	21,2230	36 7883	-1	
	8,00	45 8480	62,7700	21,2000	36 7075		
50	7 50	-0,0000 ∦5 770∩	60,0240 63 0610	21,0071 21 /021	36 7071		
50	7,30	40,1720 15 2020	63,0040 K3 0000	21,4701 01 5720	36 2021	1	
52 52	1,00	4J,070U	03,0700	21,3703	36,/034	-1	
53 F 4	0,50	43,3860	03,1400	∠1,674U	30,01U/	12	
54 ~~	0,UU	43,4780	03,1000	21,7906	30,8242	+0	±40/-48 (∅1,6)
55	5,50	45,4300	63,2060	∠1,8634	30,8212	+2	
56	5,00	45,3/60	63,2260	21,9210	36,8100	+1	¹ ·) R _P - R _N
5/	4,50	45,3420	63,2420	21,9585	36,/859	-1	,

Pos.	Z	х	У	ГP	R p	ΔR (cm) ^{1.})	Abb. 37 [832.1]
1	32,23	64,4360	57,7560	3,1452	36,2961	(-14)	
2	32,00	64,2200	58,3080	3,7379	36,369	(-6)	DIAGONALBOGEN
3	31,50	63,8800	59,1560	4,6515	36,3866	(-4)	2 INNEN
4	31,00	63,5580	59,9640	5,5212	36,4106	-2	NAHERUNGSKREIS
5	30,50	63,2580	60,7160	6,3309	36,429	0	
6	30,00	62,9840	61,3960	7,0640	36,4283	0	
7	29,50	62,7380	62,0240	7,7384	36,4145	-1	
8	29,00	62,4760	62,6800	8,4448	36,4395	+1	
9	28,50	62,2480	63,2380	9,0476	36,4199	-1	
10	28,00	62,0140	63,8320	9,6860	36,4402	+1	
11	27,50	61,8140	64,3300	10,2226	36,4112	-2	
12	27,00	61,5780	64,9240	10,8618	36,4663	+4	
13	26,50	61,3920	65,3800	11,3543	36,4378	+1	
14	26,00	61,1880	65,8940	11,9073	36,4655	+4	
15	25,50	60,9980	66,3640	12,4142	36,4753	+5	
16	25,00	60,8380	66,7740	12,8543	36,4501	+2	
17	24,50	60,6600	67,2060	13,3215	36,4572	+3	
18	24,00	60,4900	67,6380	13,7858	36,4749	+5	
19	23,50	60,3420	68,0080	14,1843	36,4549	+3	
20	23,00	60,2080	68,3520	14,5534	36,4232	-1	
21	22,50	60,0440	68,7580	14,9913	36,4565	+3	
22	22,00	59,9120	69,0860	15,3449	36,4341	+1	
23	21,50	59,7800	69,4140	15,6984	36,4221	-1	
24	21,00	59,6320	69,7780	16,0914	36,4527	+2	
25	20,50	59,5040	70,0960	16,4342	36,4527	+2	
26	20,00	59,3920	70,3760	16,7357	36,4283	0	
27	19,50	59,2640	70,6960	17,0804	36,4497	+2	1 - 59:
28	19,00	59,1780	70,9580	17,3556	36,4218	-1	$R_N = 36,4283$
29	18,50	59,0500	71,2280	17,6538	36,4227	-1	a _N = 13,8033
30	18,00	58,9440	71,4780	17,9253	36,4096	-2	z _M = 0,1407
31	17,50	58,8340	71,7760	18,2428	36,4458	+2	[1150]
32	17,00	58,7400	72,0000	18,4857	36,4255	0	
33	16,50	58,6420	72,2520	18,7561	36,4381	+1	
34	16,00	58,5260	72,4700	19,0016	36,4373	+1	
35	15,50	58,4620	/2,6920	19,2315	36,4308	0	
36	15,00	58,3980	/2,8/80	19,42/9	36,4021	-3	
3/	14,50	58,2980	73,1080	19,6/86	36,4311	0	
38	14,00	58,2360	73,2820	19,8632	36,40/5	-2	
39	13,50	58,1600	/3,4560	20,0530	36,3966	-3	
40	13,00	58,0780	73,6600	20,2728	36,4217	-	
41	12,50	58,0020	73,8500	20,4775	36,4406	+1	
42	12,00	57,9400	74,0200	20,6583	36,4431	+2	
43	11,50	57,8740	74,1800	20,8314	36,4477	+2	
44	10,00	57,8340	74,2800	20,9391	30,3777	-3	
45	10,50	57,7760	74,4220	21,0723	30,4009	-3	
40	0.50	57,7200	74,5560	21,2377	30,4010	-3	
47 19	9,50	57,6560	74,7200	21,4193	30,4440	+2	
40 10	9,00 8,50	57,6000	74,0440	21,3477	36,4401	+2	
47 50	8,00	57,5020	74,7420	21,0340	36,4301		
51	7 50	57 4800	75,0500	21,7770	36,4377	+1 +1	
50	7,50	57,4000	75,1300	21,0007	26,4001		
52 52	7,00 4 50	J7,444U	75 2120	21,7/04	00,4200 26 1100		
55	0,3U 4 00	J/,410U	75,0100	∠∠,U333	36,4103	-1	
54 55	0,00 5 50	J1,J02U	75,4040	22,1300	36,4201	U 2	
55	5,50	J7,JJ6U 57,2200	7550U	22,2030	36,4UZ7 36 1005	-3 0	
50	3,00	57,332U	75,524U	22,20U6	30,4075	-∠	+55/-3/ (1.6)
5/ 50	4,50	57,3080	/ 3,3740	ZZ,3545	30,4196	-1	
58	4,00	57,2840	/5,6600	22,424/	36,4329	U	^{1.}) R p - R N
59	3,50	57,2600	/5,/080	22,4/82	36,4366	+1	

Pos.	Z	х	У	ſ₽	Rр	ΔR (cm) ^{1.})	Abb. 38 [833.1]
1	32,24	66,8580	57,7540	3,1545	35,9772	(-20)	
2	32,00	67,1600	58,4860	3,9463	36,1368	-4	DIAGONALBOGEN
3	31,50	67,4860	59,3040	4,8268	36,134	-4	3 INNEN
4	31,00	67,8300	60,1420	5,7326	36,173	0	NÄHERUNGSKREIS
5	30,50	68,1280	60,8960	6,5433	36,189	+2	
6	30,00	68,3860	61,5400	7,2370	36,1633	-1	
7	29,50	68,6760	62,2340	7,9891	36,1923	+2	
8	29,00	68,9300	62,8780	8,6813	36,2072	+3	
9	28,50	69,1740	63,4700	9,3217	36,2097	+4	
10	28,00	69,3640	63,9480	9,8360	36,1966	-2	
11	27,50	69,5900	64,5060	10,4380	36,1609	-1	
12	27,00	69,7880	65,0100	10,9795	36,1485	-2	
13	26,50	70,0000	65,5140	11,5262	36,1548	-2	
14	26,00	70,2140	66,0400	12,0941	36,1912	+2	
15	25,50	70,4000	66,5260	12,6143	36,2091	+4	
16	25,00	70,5800	66,9600	13,0842	36,2045	+3	
17	24,50	70,7360	67,3560	13,5097	36,18	+1	
18	24,00	70,9140	67,7700	13,9603	36,1863	+1	
19	23,50	71,0780	68,1740	14,3963	36,194	+2	
20	23,00	71,2340	68,5660	14,8182	36,2028	+3	
21	22.50	71.3820	68.9260	15.2075	36,1976	+2	
22	22.00	71.5200	69.2920	15.5985	36.205	+3	
23	21.50	71 6500	69,5940	15 9272	36 173		
24	21,00	71 7760	69 9200	16,72,2	36 1679	-1	
25	20.50	71 9080	70 2240	16,2,00	36 158	-1	
26	20,00	72 0360	70,5200	16,0000	36 1506	-2	
20	19.50	72,0000	70,8400	17 2660	36 1642	-1	1 - 59
28	19.00	72,1100	71 1420	17,5909	36 1787	+1	$R_{\rm N} = -36.173$
29	18.50	72 3580	71,3820	17 8502	36 1462	-3	$q_N = 13.3691$
30	18.00	72 4680	71 6660	18 1.547	36 1619	-1	$z_{\rm M} = 0.2817$
31	17,50	72,5680	71 9340	18 4406	36 1708	0	[11.50]
32	17.00	72,6740	72,1900	18,7177	36,1809	+1	[1100]
33	16.50	72 7640	72 4100	18 9554	36 1649	-1	
34	16,00	72 8560	72 6760	19 2365	36 1965	+2	
35	15.50	72,9360	72,8480	19,4259	36,1539	-2	
36	15.00	73.0240	73.0700	19.6647	36,1643	-1	
37	14.50	73.1240	73.3080	19.9229	36.201	+3	
38	14.00	73,1900	73,4800	20.1070	36.1779	0	
39	13,50	73,2700	73,6860	20,3280	36,1969	+2	
40	13.00	73.3320	73.8500	20.5033	36,1814	+1	
41	12,50	73,3960	73,9980	20,6645	36,1603	-1	
42	12,00	73,4640	74,1640	20,8439	36,1641	-1	
43	11,50	73,5400	74,3400	21,0355	36,1874	+1	
44	11,00	73,5940	74,4800	21,1856	36,1788	+1	
45	10,50	73,6500	74,6040	21,3215	36,1642	-1	
46	10,00	73,7180	74,7620	21,4935	36,1918	+2	
47	9,50	73,7600	74,8560	21,5964	36,1602	-1	
48	9,00	73,7980	74,9500	21,6978	36,1344	-4	
49	8,50	73,8440	75,0940	21,8485	36,1638	-1	
50	8,00	73,8780	75,1820	21,9428	36,1456	-3	
51	7,50	73,9280	75,3200	22,0895	36,1858	+1	
52	7,00	73,9620	75,3980	22,1746	36,173	0	
53	6,50	73,9960	75,4820	22,2652	36,1727	0	
54	6,00	74,0220	75,5520	22,3398	36,1639	-1	
55	5,50	74,0440	75,5980	22,3907	36,1385	-3	∆R aesamt:
56	5,00	74,0740	75,6680	22,4669	36,1452	-3	+47/-51 (Ø1.7)
57	4,50	74,1000	75,7460	22,5489	36,1649	-1	
58	4,00	74,1200	75,8000	22,6065	36,1672	-1	
59	3,50	74,1300	75,8380	22,6470	36,1595	-1	^{1.}) R p - R N
				, = =	,	-	

Pos.	Z	х	У	ГР	R p	ΔR (cm) ^{1.})	Abb. 39 [834.1]
1	32,20	68,5740	56,0700	3,1855	36,3094	(-30)	
2	32,00	69,4640	56,4360	4,1478	36,5984	1	DIAGONALBOGEN
3	31,50	70,2800	56,7640	5,0272	36,6116	0	4 INNEN
4	31,00	71,0000	57,0600	5,8057	36,5983	-1	NÄHERUNGSKREIS
5	30,50	71,7480	57,3680	6,6146	36,6254	+1	
6	30,00	72,4000	57,6360	7,3196	36,6167	+1	
7	29,50	73,0400	57,8960	8,0103	36,62	+1	
8	29,00	73,7080	58,1740	8,7339	36,6633	+5	
9	28,50	74,2180	58,3800	9,2839	36,6174	+]	
10	28,00	74,8000	58,6200	9,9134	36,6383	+3	1 - 22:
11	27,50	75,2780	58,8160	10,4301	36,6016	-1	$R_N = 36,6116$
12	27,00	75,8160	59,0360	11,0113	36,623	+]	a _N = 13,9175
13	26,50	76,2740	59,2200	11,5049	36,5994	-1	z _M = 0,171
14	26,00	76,7700	59,4260	12,0419	36,6201	+1	[1155]
15	25,50	77,1700	59,5920	12,4750	36,5804	-3	
16	25,00	77,6460	59,7840	12,9883	36,6115	0	
1/	24,50	78,1000	59,9720	13,4797	36,6402	+3	
18	24,00	78,4760	60,1240	13,8852	36,6171	+1	
19	23,50	78,8400	60,2800	14,2812	36,5979	-1	
20	23,00	79,1840	60,4200	14,6526	36,5707	-4	
21	22,50	/9,5860	60,5820	15,0860	36,6031	-1	
	22,00	/9,9000	60,7120	15,4258	36,5/23	-4	
23	21,50	80,2080	60,8400	15,/594	36,6116	0	
24	21,00	80,5360	60,9720	16,1129	36,6105	0	
25	20,50	80,8760	61,1100	16,4/99	36,6307	+2	
26	20,00	81,1600	61,2300	16,/882	36,6123	0	
27	19,50	81,4640	61,3560	17,1172	36,6208	+1	
28	19,00	81,/580	61,4720	17,4333	36,628	+2	
29	18,50	81,9940	61,5760	17,6911	36,5944	-2	
30	18,00	82,2800	61,6880	17,9982	36,6124	0	
30	17,50	82,3420	61,8000	10,2031	36,6203	+ 1	
১∠ ৫৫	17,00	02,7000	61,0760	10,3200	30,000/	-1	22 50.
34	16,50	03,0000	61,7000	10,///4	36,373/	-2	23 - 37.
35	16,00	83 4440	62,0000	19,0373	36,0074	0	$K_N = $
34	15,00	83 44400	42 2420	17,2377	34 4021	-2	$a_N = -0.594$
37	14 50	83 8540	62,2020	19 7037	36 5912	-1	2 M = 0,0378
38	14,00	84 0720	62,0400	19 9362	36 6116		[1100]
30	13 50	84 2740	62,4200	20 1561	36 6286	+2	
40	13,00	84 4400	62,5000	20,1301	36 6155	0	
40	12,00	84 6000	62,5000	20,5551	36 6053	_1	
42	12,00	84 7600	62,0400	20,5007	36 6005	-1	
43	11.50	84 8960	62 7640	20,8268	36,5794	-3	
44	11.00	85.0800	62,8400	21.0259	36.6161	0	
45	10.50	85.2100	62.8960	21,1674	36.6054	-1	
46	10.00	85.3440	62,9480	31.3111	36.6042	-1	
47	9.50	85,4640	62,9980	21.4411	36.5972	-1	
48	9,00	85,6080	63,0600	21,5979	36,6234	+1	
49	8,50	85,6900	63,0880	21,6844	36,5887	-2	
50	8,00	85,7980	63,1400	21,8040	36,5934	-2	
51	7,50	85,9060	63,1800	21,9191	36,6009	-1	
52	7,00	86,0140	63,2200	22,0342	36,6155	0	
53	6,50	86,0820	63,2540	22,1101	36,5987	-1	
54	6,00	86,1840	63,2960	22,2204	36,6229	+1	
55	5,50	86,2600	63,3280	22,3028	36,6267	+2	ΔR gesamt :
56	5,00	86,3200	63,3480	22,3659	36,6182	+1	+32/-41 (Ø1,3)
57	4,50	86,3760	63,3640	22,4238	36,6116	0	. , , ,
58	4,00	86,4280	63,3920	22,4825	36,6127	0	110 0
59	3,50	86,4880	63,4120	22,5456	36,6251	+1	'') K P - K N

Pos.	Z	х	У	Гр	Rр	∆R (cm) ^{1.})	Abb. 40 [835.1]
1	32,20	68,6080	53,6280	3,2156	36,1016	(-18)	
2	32,00	69,3500	53,3200	4,0190	36,3052	+3	DIAGONALBOGEN
3	31,50	70,1300	52,9880	4,8667	36,2895	+]	5 INNEN
4	31,00	70,9020	52,6600	5,7054	36,2959	+2	NÄHERUNGSKREIS
5	30,50	71,6000	52,3620	6,4643	36,2845	+1	
6	30,00	72,2800	52,0800	7,2005	36,2828	+]	
7	29,50	72,9580	51,7860	7,9394	36,3047	+3	
8	29,00	73,5840	51,5220	8,6188	36,3121	+3	
9	28,50	74,1260	51,2920	9,2076	36,2823	0	
10	28,00	/4,6/40	51,0560	9,8042	36,2/41	0	
11	27,50	75,1980	50,8380	10,3718	36,2633	-	
12	27,00	72,7180	50,6160	10,9371	30,2007	-	
13	26,50	76,1000	50,4140	11,4413	36,2441	-3	
14	25,00	771640	50,2180	12 5073	36 2811	-5	
16	25,00	77 6240	49 8060	13,0081	36 2985	+2	
17	24,50	77 9740	49 6600	13 3873	36 2392	-4	
18	24.00	78,4100	49,4740	13.8613	36,2621	-2	
19	23.50	78.7620	49.3200	14.2455	36.2293	-5	
20	23,00	79,1300	49,1660	14,6444	36,2189	-6	
21	22,50	79,4520	49,0360	14,9917	36,1791	-10	
22	22,00	79,8000	48,8840	15,3714	36,1753	-10	
23	21,50	80,1500	48,7400	15,7498	36,1814	-10	
24	21,00	80,4780	48,5940	16,1088	36,1825	-10	
25	20,50	80,7760	48,4640	16,4339	36,1660	-11	
26	20,00	81,0840	48,3400	16,7659	36,1651	-11	
27	19,50	81,3940	48,2120	17,1012	36,1769	-10	1 - 58:
28	19,00	81,6840	48,0920	17,4151	36,1805	-10	$R_N = 36,2777$
29	18,50	81,9800	47,9580	17,7399	36,2031	-8	a _N = 13,4975
30	18,00	82,2360	47,8540	18,0162	36,1933	-8	$z_{M} = 0,2$
31	17,50	82,4440	47,7660	18,2420	36,1481	-13	[1150]
ు∠ ఎం	17,00	82,7140	47,6360	10,000	36,1674	-	
34	16,50	83 2040	47,3280	10,0001	36,2230	-5	
35	15,00	83 4560	47,3360	19.3416	36 2284	-5	
36	15.00	83 6580	47 2540	19,5596	36 2189	-6	
37	14.50	83.8940	47,1600	19.8136	36.2507	-3	
38	14,00	84,1160	47,0640	20.0554	36,2799	0	
39	13,50	84,3820	46,9940	20,3278	36,3460	+7	
40	13,00	84,4500	46,9240	20,4176	36,2501	-3	
41	12,50	84,6260	46,8460	20,6100	36,2576	-2	
42	12,00	84,7840	46,7800	20,7813	36,2529	-2	
43	11,50	84,9780	46,7020	20,9903	36,2918	+]	
44	11,00	85,0860	46,6540	21,1085	36,2521	-3	
45	10,50	85,2500	46,5860	21,2860	36,2764	0	
46	10,00	85,4100	46,5180	21,4599	36,3050	+3	
4/	9,50	85,5180	46,4/40	21,5765	36,2860	+	
48	9,00	85,6200	46,4280	21,6884	36,2696	-1	
49 50	8,50	85,7240	46,3840	21,8013	36,2614	-2	
50 51	0,00 7 50	03,844U 85 97 10	40,JJ6U 16 7210	21,73U3 22 0212	30,∠/64 36 2002	U +2	
50	7,30 7 00	84 0520	40,2040 16 9120	22,0013 22 1227	36 2003	+2	AP accent:
52 53	7,00 6 50	86 1140	40,2400 16 2120	22,102/ 00 0002	36 9720	' <i>∠</i>	$+37/_{-21}$ (01 2)
51	6,00 6 00	86 19/0	46 1810	22,2273 22 3121	36 2762		
55	5 50	86 2610	46 1580	22,0121	36 2731	0	
56	5,00	86,3300	46 1320	22,0007	36 2740	0	^{1.}) R p - R N
57	4.50	86.4000	46.1000	22.5345	36.2876	+1	2) Gesamtdurchschnittahaa
58	4,00	86,4800	46,0660	22,6214	36,3182	+4	Störungszone

Pos.	Z	х	У	ГР	R p	ΔR (cm) 1.)	Abb. 41 [836.1]
1	32,21	66,8380	51,9060	3,1788	36,0614	(+8)	
2	32,00	67,0240	51,4540	3,6675	36,0991	(+12)	DIAGONALBOGEN
3	31,50	67,3160	50,7560	4,4241	36,0200	+4	6 INNEN
4	31,00	67,6540	49,9640	5,2852	36,0170	+4	näherungskreis
5	30,50	67,9440	49,2660	6,0410	35,9853	+]	
6	30,00	68,2240	48,6000	6,7635	35,9579	2	
7	29,50	68,5240	47,8900	7,5342	35,9797	0	
8	29,00	68,7940	47,2240	8,2529	35,9940	+1	
9	28,50	68,9940	46,7400	8,7766	35,9102	-7	
10	28,00	69,2080	46,2100	9,3481	35,8708	-11	
11	27,50	69,4440	45,6560	9,9503	35,8672	-11	
12	27,00	69,6800	45,0980	10,5561	35,8831	-10	
13	26,50	69,8720	44,6220	11,0693	35,8535	-13	
14	26,00	70,0660	44,1600	11,5704	35,8299	-15	
15	25,50	70,2760	43,6520	12,1201	35,8545	-13	
16	25,00	70,4480	43,2680	12,5407	35,8018	-18	
17	24,50	70,6280	42,8040	13,0383	35,8172	-16	
18	24,00	70,8220	42,3420	13,5393	35,8489	-13	
19	23,50	70,9860	41,9560	13,9587	35,8329	-15	
20	23,00	71,1300	41,6060	14,3372	35,7974	-18	
21	22,50	71,3060	41,1860	14,7926	35,8327	-15	
22	22,00	71,4700	40,7960	15,2156	35,8551	-13	
23	21,50	71,6220	40,4220	15,6193	35,8740	-11	
24	21,00	71,7640	40,0940	15,9767	35,8667	-11	
25	20,50	71,9120	39,7680	16,3345	35,8704	-11	
26	20,00	72,0320	39,4480	16,6761	35,8711	-11	1 50
27	19,50	72,1580	39,1900	16,962/	35,8358	-14	I - 58:
28	19,00	72,3040	38,8360	17,3456	35,8915	-9	$R_N = 35,9/9/$
29	18,50	/2,4100	38,5460	17,6541	35,8943	-9	$a_N = 13,1355$
30	18,00	72,5260	38,2640	17,9590	35,9036	-8	$Z_{M} = 0,05$
31	17,50	72,6560	38,0000	18,2527	35,912/	-/	[1150]
32	17,00	/2,/640	37,7140	18,5582	35,9415	-4	
33	16,50	72,8900	37,4320	18,8670	35,9828		
34	16,00	72,9640	37,2200	19,0912	35,95/8	-2	
35	15,50	73,0660	37,0040	19,3298	35,9541	-3	
30 27	15,00	73,1420	36,/940	19,3329	35,7447	-3	
20	14,50	73,2300	36,3760	17,7001	35,7332	-5	
30	13,50	73,3100	36,3040	20 21 18	35 9574	-3	
40	13,00	73,3780	34 0340	20,2110	35 9330	-2	
40 11	12,00	73 5520	35 8240	20,3721	36 9650	-0	
41	12,00	73,6220	35 6440	20,0007	35 9771	0	
42 43	11 50	73 6920	35 4820	20,7770	35 9814	0	
44	11,00	73 7580	35 3200	21 1504	35 9920	+1	
45	10.50	73,8060	35,2040	21,2759	35,9631	-2	
46	10.00	73.8700	35.0560	21,4372	35.9760	0	
47	9.50	73,9360	34.8940	21.6121	36.0097	+3	
48	9.00	73,9740	34.8000	21.7134	35,9798	0	
49	8.50	74.0260	34.6780	21,8461	35.9877	+1	
50	8.00	74.0820	34.5560	21.9802	36.0044	+2	
51	7,50	74,1060	34,4860	22,0541	35,9696	-1	
52	7.00	74,1600	34,3560	22,1949	36.0075	+3	ΔR aesamt:
53	6,50	74,2060	34,2560	22,3049	36,0226	+4	+27/-28 (Ø 1.7) ^{2.)}
54	6,00	74,2240	34,2000	22,3635	35,9942	+1	, - ,,-,,
55	5.50	74.2500	34,1400	22,4289	35.9796	0	
56	5,00	74,2800	34,0700	22,5050	35,9826	0	^{I.}) R _P - R _N
57	4,50	74,3080	34,0040	22,5767	35,9884	+1	²) Gesamtdurchschnitt ohne
58	4,00	74,3280	33,9500	22,6342	35,9871	+]	Störungszone

Pos.	Z	Х	У	ГP	R P	ΔR (cm) 1.)	Abb. 42 [837.1]
1	32,22	64,4920	51,9120	3,1491	36,3085	-1	
2	32,00	64,3000	51,4100	3,6865	36,3677	+5	DIAGONALBOGEN
3	31,50	64,0000	50,6740	4,4812	36,3207	0	7 INNEN
4	31,00	63,7160	49,9220	5,2850	36,3027	-2	NAHERUNGSKREIS
5	30,50	63,4400	49,1720	6,0841	36,3068	-1	
6	30,00	63,1660	48,4840	6,8246	36,3022	-2	
7	29,50	62,9060	47,7920	7,5638	36,3188	0	
8	29,00	62,6540	47,1780	8,2274	36,3116	-1	
9	28,50	62,4100	46,5780	8,8750	36,3135	-1	
10	28,00	62,1820	45,9620	9,5318	36,3396	+2	
	27,50	61,9800	45,4000	10,1288	36,3453	+2	
12	27,00	61,/620	44,8840	10,6887	36,342/	+2	
13	26,50	61,5860	44,3/20	11,2297	36,342/	+2	
14	26,00	61,3800	43,9160	11,/293	36,3286	+	
15	25,50	61,2320	43,4540	12,2136	36,31/3	0	
16	25,00	61,0440	43,0200	12,6862	36,3108	-1	
1/	24,50	60,8640	42,5580	13,1820	36,3346	+	
10	24,00	60,6840	42,1180	13,65/3	36,3566	+4	
17	23,50	60,5420	41,/540	14,0480	36,3269	+1	
20	23,00	60,4040	41,3660	14,437/	30,3243	0	
21	22,50	60,2660	41,0260	14,0200	30,2703	-2	
22	22,00	60,1240 59,9840	40,6340	15,2240	36,300	-1	
23	21,50	50 9740	40,2940	15,0110	36,3172	0	
24 25	21,00	59 7340	40,0100	14 2044	36,2743	-5	
25	20,30	59 6260	39,3780	16,2744	36,3000	-2	
20	19.50	59 5060	39 0760	16,0740	36 2733	-5	1 - 58
27	19.00	59 3820	38 7800	17.2403	36 2810	-5	$R_{\rm M} = -36.3207$
20	18.50	59 2640	38 4540	17,2400	36 32010		$Q_{\rm N} = 137047$
27 30	18.00	59 1400	38 1940	17,5007	36 31 26		z w = 0.0402
31	17,50	59 0560	37 9460	18 1357	36 3038	-1	2 M - 0,0002
32	17,00	58 9700	37 6600	18 4335	36,3294	+1	[1100]
33	16.50	58 8580	37,3760	18 7387	36.3710	+5	
34	16,00	58 7760	37 1660	18 9642	36 3502	+3	
35	15.50	58,7000	36,9360	19,2061	36.3526	+3	
36	15.00	58.6200	36.7260	19.4308	36.3478	+3	
37	14.50	58.5320	36.5360	19.6398	36.3368	+2	
38	14.00	58,4600	36,3600	19,8299	36,3166	0	
39	13,50	58,4120	36,1880	20,0076	36,2926	-3	
40	13,00	58,3160	35,9920	20,2251	36,3135	-1	
41	12,50	58,2520	35,8240	20,4048	36,3072	-1	
42	12,00	58,2000	35,6800	20,5579	36,2835	-4	
43	11,50	58,1220	35,5040	20,7502	36,3045	-2	
44	11,00	58,0660	35,3440	20,9196	36,3115	-1	
45	10,50	58,0080	35,1840	21,0898	36,327	+1	
46	10,00	57,9600	35,0680	21,2153	36,3071	-1	
47	9,50	57,9060	34,9400	21,3541	36,3075	-1	
48	9,00	57,8540	34,8200	21,4848	36,3074	-1	
49	8,50	57,8160	34,6840	21,6254	36,3242	0	
50	8,00	57,7800	34,5840	21,7316	36,315	-1	
51	7,50	57,7240	34,4600	21,8675	36,3419	+2	
52	7,00	57,6900	34,3840	21,9506	36,3245	0	
53	6,50	57,6600	34,3040	22,0361	36,3164	0	
54	6,00	57,6320	34,2240	22,1208	36,3146	-1	ΔR gesamt :
55	5,50	57,5960	34,1360	22,2158	36,3302	+]	+41/-54 (Ø1,6)
56	5,00	57,5760	34,0840	22,2715	36,3139	-1	
57	4,50	57,5540	34,0160	22,3429	36,3201	0	^{1.}) R _P - R _N
58	4,00	57,5360	33,9600	22,4016	36,3207	0	

Pos.	Z	х	У	۲ _P	R _P	ΔR (cm) ^{1.})	Abb. 43 [838.1]
1	32,22	62,7260	53,6160	3,1566	36,5157	(-12)	
2	32,00	62,1880	53,3880	3,7409	36,6088	-3	DIAGONALBOGEN
3	31,50	61,4320	53,0760	4,5587	36,5921	-4	8 INNEN
4	31,00	60,7080	52,7760	5,3424	36,5821	-5	NÄHERUNGSKREIS
5	30,50	59,9600	52,4460	6,1598	36,6146	-2	
6	30,00	59,2900	52,1640	6,8868	36,6195	-1	
7	29,50	58,6560	51,9060	7,5712	36,6202	-1	
8	29,00	58,0000	51,6200	8,2868	36,6597	+3	
9	28,50	57,4560	51,3800	8,8813	36,6429	+]	
10	28,00	56,8540	51,1260	9,5347	36,6810	+5	
11	27,50	56,3300	50,9120	10,1006	36,6790	+4	
12	27,00	55,8340	50,7000	10,6401	36,6744	+4	
13	26,50	55,3400	50,4940	11,1753	36,6816	+5	
14	26.00	54.8980	50.3040	11.6564	36.6650	+3	
15	25.50	54,4560	50,1160	12,1367	36.6610	+3	
16	25.00	54.0120	49.9260	12.6196	36.6720	+4	
17	24.50	53,6000	49.7560	13.0653	36.6682	+3	
18	24.00	53,2160	49.5800	13,4875	36.6589	+2	
19	23.50	52 8820	49 4500	13 8458	36 6118	2	
20	23.00	52 4640	49 2680	14 3017	36 6515	+2	
21	22,50	52,1040	49 1160	14 6906	36 6504	+2	
22	22,00	51 7560	48 9600	15 0737	36 6556	+2	
23	21,50	51 4200	48 8240	15 4362	36 6548	+2	
20	21,00	51 1040	48 6940	15 7778	36 6472	+1	
25	20.50	50 8460	48,5800	16 0.599	36 6001	-3	
26	20.00	50.5400	48.4520	16,3916	36.6037	-3	
27	19.50	50 2520	48,3240	16 7067	36 6030	-3	1 - 59
28	19.00	49 9740	48 2100	17 0071	36,5992	-3	$R_N = 36.6341$
29	18.50	49.6800	48.0840	17,3270	36.6216	-1	$q_N = 14.3935$
30	18.00	49,4600	47.9860	17.5678	36.5845	-5	7 M = 0.1983
31	17.50	49 2120	47 8860	17 8351	36 5792	-5	[11.50]
32	17.00	48 9560	47 7760	18 1138	36 5926	-4	[1100]
33	16.50	48,7200	47.6700	18.3724	36.5972	-4	
34	16.00	48,4680	47.5660	18,6450	36.6229	-1	
35	15.50	48,2640	47,4860	18.8641	36.6089	-3	
36	15.00	48.0520	47.3920	19.0960	36.6147	-2	
37	14.50	47,8320	47.2960	19.3360	36.6363	0	
38	14 00	47 6480	47 2080	19,5397	36 6327	0	
39	13.50	47,4560	47.1240	19,7493	36.6424	+1	
40	13.00	47 2660	47 0.560	19 9.508	36 6526	+2	
41	12,50	47 1200	46 9960	20 1086	36 6296	0	
42	12.00	46.9600	46.9260	20.2832	36.6300	0	
43	11.50	46,7900	46.8560	20.4671	36.6468	+1	
44	11.00	46.6600	46.8000	20.6086	36.6309	0	
45	10,50	46,5000	46,7260	20,7848	36,6557	+2	
46	10.00	46.3800	46.6800	20.9132	36.6420	+1	
47	9.50	46.2740	46.6380	21.0272	36.6217	-1	
48	9.00	46,1380	46,5800	21,1751	36,6414	+]	
49	8,50	46,0140	46,5260	21,3103	36,6563	+2	
50	8,00	45,9000	46,4780	21,4340	36,6671	+3	
51	7,50	45,8420	46,4540	21,4968	36,6255	-1	
52	7,00	45,7480	46,4140	21,5989	36,6295	0	
53	6,50	45,6540	46,3680	21,7034	36,6429	+1	
54	6,00	45,5820	46,3400	21,7806	36,6364	0	
55	5,50	45,5040	46,3040	21,8665	36,6456	+1	ΔR gesamt :
56	5,00	45,4480	46,2840	21,9259	36,6354	0	+61/-61 (Ø 2.1)
57	4,50	45.3920	46.2620	21,9860	36,6330	0	
58	4,00	45,3440	46,2440	22,0372	36,6286	-1	
59	3,50	45,3200	46,2320	22,0640	36,6067	-3	'·) R p - R n

Die vorliegenden Abweichungen (ΔR) sind in den Tabellen auf cm gerundet. Die durchschnittliche Abweichung wurde für jeden Bogen berechnet und ist jeweils im unteren Bereich jedes Tabellenblattes zu finden.

Abschließend wurden alle Werte graphisch aufgetragen. Somit ergaben sich acht Näherungskreise. Die Bögen 1 bis 4 sowie die Bögen 7 und 8 entsprechen dem dargestellten "Normalbogen" in Abbildung 44. Die Zickzacklinie beschreibt dabei den Verlauf der aufgemessenen Punkte Ferris. Die gestrichelte Linie stellt den Radius dar, mit dem der Diagonalbogen hätte konstruiert werden können.

Abb. 45 [Blatt 835.2] NÄHERUNGSKREIS DIAGONALBOGEN 5 (Darstellung "STÖRUNGSZONE" Stephan / Ebering)

Ausgehend von ein und demselben Vorgehen für alle acht Bögen ergeben sich für die Bögen 5 und 6 im mittleren Bereich der Kuppel auffällig hohe Abweichungen mit negativen Vorzeichen.

Nach Aussage von Stephan könnten diese beiden "Störungszonen" mit einer Absenkung des Mittelpunktes interpretiert werden, die möglicherweise zum Zeitpunkt der Ausführungsarbeiten stattgefunden hat. Denkbar wäre tatsächlich, dass der Balken, der die Messkanzeln trug (Abb. 16, Kapitel 2), abgesackt ist und somit eine Senkung des Mittelpunktes zur Folge hatte. Diese Möglichkeit ist in den Abbildungen 45 und 46 für die Bögen 5 und 6 als punktierte Linie dargestellt.

Abb. 46 [Blatt 835.2] NÄHERUNGSKREIS DIAGONALBOGEN 6 (Darstellung "STÖRUNGSZONE" Stephan / Ebering)

DIAGONALBÖGEN INNEN

DIE WICHTIGSTEN EINZELMASZE UND IHRE MITTELWERTE

Bogen	RN	α _N	ΖN	r bas	r 1	Zı	Ds	X N1
				RN - aN				
1	36,7975	14,5788	0,2302	22,2187	3,1309	32,2500	22,2911	60,4775°
2	36,4283	13,8033	0,1407	22,6250	3,1452	32,2300	22,5990	61,7498°
3	36,1730	13,3691	0,2817	22,8039	3,1545	32,2400	22,7966	62,0656°
4	36,6116	13,9175	0,0596	22,6941	3,1855	32,2000	22,7441	61,3871°
5	36,2777	13,4975	0,2000	22,7802	3,2156	32,2000	22,8462	61,8949°
6	35,9797	13,1355	0,0500	22,8442	3,1788	32,2100	22,8585	63,3595°
7	36,3207	13,7047	0,0602	22,6160	3,1491	32,2200	22,6502	62,3057°
8	36,6341	14,3935	0,1983	22,2406	3,1566	32,2200	22,2790	60,9381°
Ø	36,4028	13,8000	0,1526	22,6028	3,1645	32,2213	22,6331	61,7723°

 α_{\emptyset} = asin [(32,2213 - 0,1526) / 36,4028] = 61,7560°

Abb. 47 [Blatt 841] GESAMTÜBERSICHT DER 8 BÖGEN

(Darstellung Stephan / Ebering)

Wie bereits im Kapitel "Bauausführung" angekündigt, wird in diesem Kapitel die Herleitung des Umrechnungsfaktors "Faktor F" vom Querschnitt in den Diagonalschnitt für die Gewölbestärke dargestellt.

Der Faktor F wird immer dann benötigt, wenn es sich um Berechnungen handelt, bei denen die Gewölbestärke im Diagonalschnitt berücksichtigt werden muss.

Da es nur für wenige Punkte möglich war, die vollständige Gewölbestärke durch Aufmaß zu ermitteln (Abb. 26, Kapitel 3) und sich diese wegen der Unzugänglichkeit der Eckrippen auch nicht auf den Diagonalschnitt bezogen, suchte Stephan nach einer Möglichkeit, die Gewölbestärke mit Hilfe der von Ferri aufgemessenen Werte zu ermitteln.

Das Ziel der Überlegungen war es, die Gewölbestärke in jeder von Ferri aufgemessenen Höhe angeben zu können. Da diese Maße, wie im vorangegangenen Kapitel erläutert, in den Ecken gemessen wurden, musste die Angabe der Gewölbedicke ebenfalls im Diagonalschnitt erfolgen.

Stephan fand die Lösung in einer mathematisch hergeleiteten Formel unter Berücksichtigung der Aufmaßwerte Ferris und der im Kapitel 4 ermittelten Radien.

UMRECHNUNG DER GEWÖLBEDICKE VOM QUERSCHNITT IN DEN DIAGONALSCHNITT

Abb. 48 [Blatt 884.1 k] ÜBERSICHT, M. 1:800 (maßstäbliche Darstellung Stephan / Ebering)

Die Abbildung 48 soll dem Leser zunächst einmal einen Überblick über die entsprechenden Lagen der Gewölbestärke im Quer- bzw. im Diagonalschnitt verschaffen, die durch dicke schwarze Linien dargestellt sind.

Abb. 49 [Blatt 884.2 k] SCHAUBILD

(maßstäbliche Darstellung Stephan / Ebering)

Auf Grund ihrer Geometrie ist die Strecke, die die Gewölbedicke im Diagonalschnitt kennzeichnet (d') länger als die entsprechende Strecke im Querschnitt (d). Wegen der perspektivischen Darstellung kann dies allerdings nicht hinreichend verdeutlicht werden.

Verfolgt man die abgebildete Krümmung der Kuppel, so wird einem bewusst, dass sich die Gewölbestärke nicht nur in Abhängigkeit von ihrer horizontalen Lage, sondern ebenfalls in Abhängigkeit von der jeweiligen Höhe verändert. Diese Verjüngung der Gewölbedicke erfolgt, wie in Kapitel 3 beschrieben, in Abhängigkeit von der Neigung des Winkels α , welcher im Diagonalschnitt zu finden ist.

Unter Berücksichtigung der in Kapitel 4 ermittelten Radien kann dieser Winkel für jede Höhe zi mit Hilfe des Tangenssatzes errechnet werden.

Der Winkel α unterscheidet sich ebenfalls in seiner Größe von dem entsprechenden Winkel des Querschnittes und wird in der Herleitungen als Winkel ß bezeichnet.

Weitere relevante Größen sind die Strecken Δr im Diagonalschnitt und die entsprechende Größe für Δw im Querschnitt, welche im Schaubild Abbildung 49 als gestrichelte Linien dargestellt sind.

Die im Schaubild dargestellte Herleitung für Faktor F erfolgte nach den mathematischen Gesetzen der Trigonometrie und kann entsprechend den aufgestellten Formeln in Abbildung 51 nachvollzogen werden.

Die folgende isometrische Abbildung (Abb. 50) dient dem Leser zur Auffindung der verwendeten Bezeichnungen sowie dem Nachvollzug der aufgestellten trigonometrischen Beziehungen.

Abb. 50 [Blatt 884.1 I] ISOMETRIE NACH DIN 5, M. 1:200 (Darstellung Stephan / Ebering)

<u>GEGEBEN:</u>

Zi	[AUFMASZ]
ΖM	[831.1 ff / 841]
Ri	[831.1 ff / 841]
α =	asin (zi-zm/Ri)
Δz	[HILFSGRÖSSE]
Ψ =	22,5°

ABLEITUNG FÜR B UND F:

 $\beta = \operatorname{atan} (\Delta z / \Delta w)$ $\beta = \operatorname{atan} (\Delta r \cdot \tan \alpha / \Delta r \cdot \cos \Psi)$ $\beta = \operatorname{atan} (\tan \alpha / \cos \Psi)$ $d' = \Delta z / \sin \alpha$ $d = \Delta z / \sin \beta$ $F = d' / d = \sin \beta / \sin \alpha$

Abb. 51 [Blatt 884.2 I] ABLEITUNG

α	F	α	F	α	F
62°	1,0164	41°	1,0445	20°	1,0717
61°	1,0177	40°	1,0460	19°	1,0727
60°	1,0188	39°	1,0474	18°	1,0736
59°	1,0200	38°	1,0488	17°	1,0745
58°	1,0212	37°	1,0503	16°	1,0754
57°	1,0225	36°	1,0517	15°	1,0762
56°	1,0237	35°	1,031	14°	1,0770
55°	1,0250	34°	1,0545	13°	1,0777
54°	1,0263	33°	1,0559	12°	1,0784
53°	1,0276	32°	1,0572	11°	1,0790
52°	1,0290	31°	1,0586	10°	1,0796
51°	1,0303	30°	1,0599	9°	1,0801
50°	1,0317	29°	1,0612	8°	1,0806
49°	1,0331	28°	1,0625	7°	1,0810
48°	1,0345	27°	1,0637	6°	1,0814
47°	1,0359	26°	1,0650	5°	1,0817
46°	1,0373	25°	1,0662	4°	1,0819
45°	1,0388	24°	1,0674	3°	1,0821
44°	1,0402	23°	1,0685	2°	1,0823
43°	1,0416	22°	1,0696	۱°	1,0824
42°	1,0431	21°	1,0707	0°	1,0824

Abb. 52 [Blatt 884 a] FAKTOR F

Um die in Abbildung 52 errechneten Werte für F zu erhalten, musste zunächst für jede Winkelhöhe α der dazugehörige Winkel im Querschnitt (Winkel ß) berechnet werden.

Dies erfolgte mittels des Kotangens aus dem Quotienten von Tangens α und Tangens Ψ (siehe Ableitung). Für den Winkel Ψ wurde der Durchschnittswert von 22,5° verwendet, da dies der Regelwert für ein Achteck ist.

Abschließend wurde der Sinuswert von β ermittelt und durch den Sinuswert von α dividiert.

Im 3. Kapitel wurde in den Berechnungen für die Abstände der Fischgrätenschichten (Abb. 24, Kapitel 3) der Faktor F benutzt.

An dieser Stelle soll die Vorgehensweise, die in der Fußnote Abbildung 24 in Kurzform beschrieben ist, näher erläutert werden.

Für die fünf Testpunkte wurden zunächst einmal die Werte für den Faktor F geschätzt. Der angenommene Wert entsprach der Winkelangabe, unter dem der jeweiligen Testpunkt vermutet wurde.

Der Testpunkt 1 befand sich beispielsweise in einer Höhe von 12,95 m, welches einem Winkel von ungefähr 19° entspricht. Gemäß Tabelle ist für diesen Testpunkt ein Faktor-F-Wert von 1,07 zu erwarten. Mit diesem Wert wurden nun die Winkel α und β entsprechend der Formeln berechnet.

Anschließend erfolgte durch Iteration (wiederholte Berechnung) die genaue Bestimmung des Wertes von Faktor F, indem dieser mit der Formel F = sin β / sin α errechnet wurde.

Im Gegensatz zu den hier behandelten Innenmaßen konnten die Außenmaße nur unter Benutzung der Aufmaße aus dem Querschnitt errechnet werden. Dazu wurden letztere ebenfalls mittels Faktor F in Diagonalmaße umgerechnet und zum jeweiligen Innenradius addiert. In der vorliegenden Studie wird auf die Außenmaße jedoch nicht näher eingegangen, da diese keine vertiefenden Erkenntnisse mit sich bringen. Gemäß der Aussagen von Stephan stimmte er den Ausführungen von Silvia Briccoli Bati zu, die 1983 von der Universita di Firenze veröffentlicht wurden.

Stephan plante die folgenden Darstellungen (vgl. BRICCOLI BATI 1983, S. 40) wegen ihrer Aussagekraft in die Studie zu übernehmen. Leider konnte er diese nicht mehr entsprechend seiner Vorstellung kommentieren.

fig.42

fig.31

fig.32

Abb. 53 KRÄFTEVERLAUF

(Darstellung Briccoli Bati)

In den Studien Stephans befindet sich eine von ihm nach Mainstone angefertigte Skizze, die er ebenfalls veröffentlichen und kommentieren wollte. In Abbildung 54 wird eine Aussage über die Spannungsverhältnisse innerhalb der Kuppel getroffen.

DOMKUPPEL FLORENZ

HYPOTHETISCHE, FASSREIFEN"-SPANNUNGEN IN DER INNENSCHALE NACH: MAINSTONE, BRUNELLESCHI'S DOME OF S. MARIA DEL FIORE AND SOME RELATED STRUCTURES, LONDON, 1972 (VORTR. NEWCOMEN SOCIETY, 1970)

> "ES IST JEDOCH NÄHER AN DER WAHRHEIT, DIE VOLLE "BREITE BEIDER SCHALEN ALS POLYGONALE KUPPELN ZU BETRACHTEN, MAXIMALSPANNUNGEN VIELLEICHT NUR DAS DOPPELTE DER KALKULIERTEN."

Abb. 54 [Blatt 788] SPANNUNGSVERHÄLTNISSE

(Darstellung Stephan)

Des Weiteren plante Stephan die Statik nach William Barcley Parsons vertiefend zu erläutern, da dessen Aussagen ebenfalls seinen Überlegungen entsprachen. Die Kernaussagen Parsons' sind auf der folgenden Seite zu finden.

Statik nach William Barcley Parsons (1939)

Aussagen zur Statik (vgl. PARSONS 1939, S. 592-599)

- Beide Schalen tragen ihre Last zum Teil selbst, zum Teil wird sie an die Eckrippen abgegeben.
- Die horizontal geneigten Bögen dienen der Versteifung und der Lastübertragung auf die Eckrippen.
- In einer Kuppel gibt es zwei Druckkomponenten:
 - 1. Druck aus der Gewölbekraft (diagonal nach unten gerichtet)
 - 2. innerer Druck eines jeden Ringes (tangential und horizontal gerichtet)

Beide Schübe verbinden sich in nach außen gerichtete Kräfte, deren maximale Kraft in der Bruchfuge zu finden ist.

- Berstbelastung (Spannung im Mauerwerk bei hoher Druckbelastung) wird ausbalanciert durch eine Kette von Balken aus Kastanienholz in etwa einem Viertel der Höhe der inneren Schale von ihrer Basis zur Ebene der Laternenöffnung (je 3 zusammengehaltene Balken pro Seite, Dicke: 12,1 cm, befestigt an jedem Hauptbalken). Zusätzlich ein umschließendes Eisenband, das auf die Balken genagelt ist (Brunelleschi hat hier die Bruchfuge angenommen).
- Der Grenzwinkel für Mauerwerk, bis zu dem die Reibung die Gleittendenz kompensiert, ist etwa 30°. Bis zu 30° ist also jeder Ring in sich freitragend, ansonsten muss er verkeilt werden (Funktion des Schlussringes sowie der Laterne).
- Gewicht des Gewölbes erzeugt Druck nach unten und horizontale Schubkräfte in der Krone. Es entstehen diagonal Resultierende, die durch die Gewölbesteine hindurchgehen und letztlich von den Stützpfeilern aufgenommen werden.
- Je größer die Kuppelhöhe, desto geeigneter ist sie, eine Laterne zu tragen.
- Die Kuppel ist auf Grund ihrer Materialien nicht in der Lage, Zugspannungen aufzunehmen und muss deshalb unterhalb der so genannten Bruchfuge aufhören und als Gewölbe behandelt werden.
- Kuppel: Meridian- und Ringbelastungen für Elemente der gleichen Schicht sind konstant.
- Klostergewölbe: Ringbelastungen in derselben Höhe sind konstant, Meridianbelastungen variieren.

Kuppelstatik

- Zwischenrippen sind ohne Bedeutung.
- Die Dicke der Innenschale ist ausreichend, um ihr eigenes Gewicht auf die Eckrippen durch die Gewölbewirkung zu übertragen.
- Die Bruchfuge ist so weit unten in der Kuppel gelegen, dass echte Gewölbewirkung erst an einem Punkt beginnt, der in der unteren Hälfte der Kuppel liegt.
- Der gesamte Auswärtsdruck wird von den Mauern und Strebepfeilern aufgenommen (Balkenkette wäre nicht notwendig).

Statik für Klostergewölbe

- Zwischenmeridianrippenbögen zur Druckverteilung
- Einzelmeridianbelastungen stark reduziert
- Starker Kragen an der Laterne als Keil

Ergebnis der Analyse: Egal ob Kuppel oder Klostergewölbe, die resultierende Linie des Druckes liegt vollkommen innerhalb der Schalen und nahe am Kern. ALBERTI, Leon Battista: De re aedificatoria. O.O. 1436

BATTISTI, Eugenio: Brunelleschi. The complete Work. Mailand: Thames and Hudson, 1976

BATTISTI, Eugenio: Fillippo Brunelleschi. Das Gesamtwerk. Stuttgart 1979

BRICCOLI BATI, Silvia: La cupola di Santa Maria del Fiore: osservazioni sull'analisi condotta secondo la teoria di Dischinger. Florenz: Universita di Firenze-Facolta di Architettura, 1983

BRAUNFELS, Wolfgang: Der Dom von Florenz. Olten 1964

FANELLI, Giovanni/FANELLI, Michele: Die Kuppel Brunelleschis. Geschichte und Zukunft eines großen Bauwerks. Florenz: Mandragora, 2004

FERRI, W./ FONDELLI, M./ FRANCHI, P./ GRECO, F.: Il relevamento fotogrammatico della cupola di Santa Maria del Fiore in Firenze. In: Bollettino di Geodesia e scienze affini-N.3. Florenz 1971

KRÄMER, Thomas: Die große Kuppel von Florenz. Stuttgart 2001

MAINSTONE, Rowland: [Brunelleschi's dome. In: Architectural Review 162]. O.O., o.J. [1977]

MAINSTONE, Rowland: Brunelleschi's dome of S. Maria del Fiore and some related structures. London 1972

MARCHINI, Giuseppe: Baptisterium, Dom und Dom-Museum in Florenz. Königstein 1972

NELLI, Giovan Battista: Descrizione e studi del' l'insigne fabbrica di Santa Maria del Fiore. Florenz 1733

OPERA DI SANTA MARIA DEL FIORE DI FIRENZE (Hrsg.): Rilievi e studi. Florenz: Opera di Santa Maria del Fiore, 1939

PARSONS, William Barcley: Die Kuppel von Santa Maria del Fiore. In ders.: Engineers and Engineering in the Renaissance. Baltimore 1939

PASQUALE, Salvatore di: [Una ipotesi sulla struttura della Cupola di S. Maria del Fiore. In: Restauro Nr. 28]. O.O., o.J. [1976]

Rossi, Paolo Alberto: Le cupole del Brunelleschi. Bologna: Calderini 1982

SAALMANN, Howard: The Cupola of Santa Maria del Fiore. London 1980

STEGMANN, Carl von/GEYMÜLLER Heinrich von: Die Architektur der Renaissance in Toscana. München 1885-1908

Abb 1	Blatt 854a	Klosterkuppel	5.8
Abb 2	Blatt 859	Hauptmaße	5.9
Abb 3	Blatt 721 1	Anordnung der Rippen im Grundriss	S 10
Abb 4	Blatt 721.1 Blatt 721.2	Querrippen in einem Sektor	S 11
Abb 5	Blatt 894	Querschnitt mit Laterne	S 12
Abb 6	Blatt 779	Konstruktionsteile eines Sektors	5.12 5.13
Abb. 7	Blatt 1400	Sporn Idealform	5.15 S.14
Abb. 7	Platt 1200	Spont, rueanonn Schlustring, Quorschnitt	5.10
ADD.0	Blatt 1284	Plattform Crundrics	5.17 S 17
Abb. 7	DIGIT 1204	Stadtolan, firanza como ora"	5.17 © 10
ADD. 10	Platt 951 b	Stadipidh "Illerize come era	5.17
ADD. 11	DIGIT 054 D	Quino-Acuto-bogen Paris Quatan nach Padalli	3. ZI
ADD. 12	DIGIT 11470		3. ZI
ADD. 13	DIGITITISU		3. ZZ
ADD. 14	BIOTT 145/	Entstenungsphäsen der Scheiteinone	5.23
ADD. 15		Kuppeinone	5. 24
Abb. 16	Blatt 938b	Messkanzeln	5.25
Abb. 1/	Blatt 1139 a	Gualandrino	S. 26
Abb. 18	Blatt 1139	Gualandrino con tre corde	S. 27
Abb. 19	Blatt 1230	Konusprinzip	S. 28
Abb. 20	Blatt 1249	Innengirlande	S. 29
Abb. 21	Blatt 1237	Foto der abgedeckten Außenschale	S. 29
Abb. 22	Blatt 1237b	Außengirlande (Deckblatt zu 1237)	S. 30
Abb. 23		Fischgrätenmauerwerk nach Sanpaolesi	S. 30
Abb. 24	Blatt 1265	Fischgrätenschichten-Abstände	S. 32
Abb. 25	Blatt 1266	Fischgräten-Spreizung	S. 34
Abb. 26	Blatt 1292	Gewölbedicken	S. 35
Abb. 27	Blatt 1260	Idealverlauf Fischgräten und Girlanden (Reuse)	S. 36
Abb. 28		Kuppelstruktur nach P.A. Rossi	S. 37
Abb. 29		Ferri mit Stereometric-Apparat	S. 39
Abb. 30		Fotogramme des Innengewölbes	S. 39
Abb. 31		Achsmaß Theodolit	S. 39
Abb. 32	Blatt 898	Grundriss des Domes mit x, y-Koordinaten	S. 40
Abb. 33	Blatt 989	Grundriss "Fond"	S. 41
Abb. 34	Blatt 839	Bezeichnungen Diagonalschnitt	S. 42
Abb 35	Blatt 1150	Näherunaskreis aus 3 Punkten	S 43
Abb 36	Blatt 831 1	Tabelle Näherungskreis Diggongloggen 1. innen	S 44
Abb 37	Blatt 832 1	Tabelle Näherungskreis Diagonalbogen 2 innen	S 45
Abb 38	Blatt 833 1	Tabelle Näherungskreis Diagonalbogen 2, innen	5- 16 5- 16
Abb 39	Blatt 834 1	Tabelle Näherungskreis Diagonalbogen 4. innen	5.40 S 17
Abb 10	Blatt 835 1	Tabelle Näherungskiels Diagonalbogen 4, innen	5. 47 5. 48
Abb. 41	Blatt 836 1	Tabelle Näherungskreis Diagonalbogen 6, innen	5. 40 S 19
Abb. 47	Blatt 837 1	Tabelle Näherungskreis Diagonalbogen 7, innen	5.47 5.50
ADD. 42	Blatt 838 1	Tabelle Näherungskreis Diagonalbagan 8. innen	5. JU S 51
ADD. 43	Platt 927.2	Näherungskreis Diagonalbagan 7 (Normalbagan"	5.51
ADD. 44	DIGIT 037.2	Näherungskreis, Diagonalbagen 5 / Störungszene"	5. JZ
ADD. 45	DIGIT 035.2	Näherungskreis, Diagonalbagan (/ Stärungszone	3. 33 S E A
ADD. 46		Naherungskreis, Diagonaibogen 6 / "Storungszone	3. 54
ADD. 4/	BIOTT 841	Gesamtubersicht der 8 Bogen	3. 55
ADD, 48	BIOTT 884.1 K	UDERSIGNT ZU FORTOF F	3. 56
ADD. 49	BIOTT 884.2 K	SCHOUDIIO ZU FORTOR F	5.5/
ADD. 50	BIOTT 884.11		5.58
Abb. 51	Blatt 884.2 I	Ableitung Faktor F	S. 58
Abb. 52	Blatt 884 a	Faktor F / Zahlenreihe	S. 59
Abb. 53		Briccoli Bati, Fig. 42, 31, 32 / Anmerkung zur Statik	S. 60
Abb. 54	Blatt 788	Hypothetische Fassreifen nach Mainstone	S. 61